Name: \qquad
Instructions: Answer all problems in the space provided! Do your rough work on scrap paper.

1. Complete the following rules:
(a) $a^{x} \cdot a^{y}=\frac{a^{x+y}}{1 / a}$
(b) $a^{\frac{x}{y}}=\sqrt[y]{a^{x}}$
\qquad (c) $\left(a^{x}\right)^{y}=$ \qquad
(d) $x^{-a}=$

2. Suppose you have a line passing through points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. What is an equation that describes its slope?

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

3. What is the point-slope form of the equation of a line?

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

\qquad
4. What is the slope intercept form for the equation of a line? \qquad $y=m x+b$
5. Describe when you should use an exponential model to describe a quantity: when the quantity ts changing by a fixed relative (percentage) amount at regular intervals.
6. Jhevon decided to pay taxes on his income from his hotdog stand. He bought his stand for $\$ 16,500$, and his accountant (every hotdog vendor should have an accountant) plans to depreciate the stand, for tax purposes, to a value of $\$ 0$ over 10 years. Assuming this depreciation is linear and is described by a function $V(t)$-the value of the hotdog stand after t years from purchase,
(a) Find a formula for $V(t): \quad V(t)=16500-1650 t$
(b) What is the domain of $V(t)$? $[0,10]$, specifically $t \in[0,10]$
(c) What is the range of $V(t)$? $[0,16500]$

(d) What does the slope of $V(t)$ represent? annual loss in value of the stand.

Write your answer to (b) and (c) above in interval notation.
Bonus:

1. Solve the following equations:
(a) $2 e^{3 x-1}=5: \Rightarrow x=$ \qquad (b) $\ln \sqrt{x+1}=3: \Rightarrow x=$ \qquad
2. Simplify: $\ln \sqrt{\frac{3 x^{2} e^{x}}{\sqrt{x}}}=$

$$
\begin{gathered}
\frac{\frac{1}{2} \ln 3+\ln x+\frac{1}{2} x-\frac{1}{4} \ln x}{O R} \\
\frac{\ln 3}{2}+\frac{3 \ln x}{4}+\frac{x}{2}
\end{gathered}
$$

