Name: Instructions: No calculators! Answer <u>all</u> problems in the space provided! Do your rough work on scrap paper. - 1. Expand and simplify: - (a) $(a-b)^2 =$ _____ (b) (x+y)(a+b) = _____ - (c) a(x+2) = _____(d) (a+b)c = _____ - **2.** Sketch the following: $$y = \frac{1}{x}$$ $$y = x^2$$ $$y = x^3$$ $$y = |x|$$ - **3.** For $ax^2 + bx + c = 0$, state the quadratic formula: ______ (Note: the quadratic formula is an equation.) - **4.** Find the x- and y-intercepts of $y = 6x^2 + x 1$: x-int: ______, y-int: ______ - 5. If $f(x) = x^2 x + 1$, compute and simplify $\frac{f(x+h) f(x)}{h} =$ - **6.** Factor: $2x^3 2x^2 4x =$ ______ - 7. Simplify: $\frac{x^3 + 2x^2 25x 50}{x 5} =$ ______ - 8. Complete the rules: - (a) $a^x \cdot a^y =$ ______ (b) $\frac{a^x}{a^y} =$ ______ (c) $(a^x)^y =$ ______ ## Bonus: - **1.** Find the domain of $f(x) = \frac{4}{\sqrt{x^2-9}}$ in interval notation. dom(f) = - **2.** If $f(x) = \begin{cases} 2 x^2 & \text{if} & x < 3 \\ 7 & \text{if} & 3 \le x < 5, \text{ what is } f(2)? \ f(2) = \underline{\qquad} \\ 1 + x & \text{if} & x \ge 5 \end{cases}$ - 3. If $f(x) = \sqrt{x^3 + 1}$ and $g(x) = 3x^2 4$, find and simplify $g \circ f(x) =$