
1

After learning a core group of basic functions, we will be armed with the tools to create formulas that 
describe scenarios as diverse as trends in the stock market, world population, historic Olympic wins, the
growth of computing power, and the popularity of a new product.  © Michael Nagle/Bloomberg via Getty Images

Functions and Models

The fundamental objects that we deal with in calculus are functions. This chapter

prepares the way for calculus by discussing the basic ideas concerning functions,

their graphs, and ways of transforming and combining them. We stress that a func-

tion can be represented in different ways: by an equation, in a table, by a graph, or

in words. We look at the main types of functions that will be needed in our study

of calculus and describe the process of using these functions as mathematical 

models of real-world phenomena.
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Functions and Their Representations

■ Introduction to Functions
Mathematical relationships can be observed in virtually every aspect of our envi-
ronment and daily lives. Populations, financial markets, the spread of diseases, set-
ting the price of a new product, and the effects of pollution on an ecosystem can all
be analyzed using mathematics.

Many mathematical relationships can be considered as functions. A function is
a correspondence in which one quantity is determined by another. For instance,
each day that the US stock market is open corresponds to a closing price of Google
stock. We say that the daily closing price of the stock is a function of the date.

For additional illustrations, consider the following four situations.

A. The area of a square plot of land depends on the length of one side of the
plot. The rule that connects and is given by the equation . With each
positive number there is associated one value of , and we can say that is a
function of .

B. The human population of the world depends on the time . The table gives
estimates of the world population for certain years. For instance, when

, . But for each value of the time there is a corre-
sponding value of , and we say that is a function of .

C. The cost of mailing an envelope depends on its weight . Although there is
no simple formula that connects and , the post office has a rule for deter-
mining when is known.

D. The vertical acceleration of the ground as measured by a seismograph during
an earthquake is a function of the elapsed time . Figure 1 shows a graph gen-
erated by seismic activity during the Northridge earthquake that shook Los
Angeles in 1994. For a given value of , the graph provides a corresponding
value of .

Each of these examples describes a rule whereby, given a number ( , , , or ),
another number ( , , , or ) is assigned. In each case we say that the second num-
ber is a function of the first number. You can think of a function in terms of an
input /output relationship, where the function assigns an output value to each input
value it accepts.
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Vertical ground acceleration during
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Year (millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080
2010 6870
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SECTION 1.1 ■ Functions and Their Representations 3

■ A function is a rule that assigns to each input exactly one output.

Notice that while a function can assign only one output to each input, it is per-
fectly acceptable for two different inputs to share the same output. Although a func-
tion can be defined for any sort of input or output, we usually consider functions for
which the inputs and outputs are real numbers.

We typically refer to a function by a single letter such as . If represents an
input to the function , the corresponding output is , read “ of .”

The set of all allowable inputs is called the domain of the function.

The range of is the set of all possible output values, , as varies
throughout the domain.

A symbol that represents an arbitrary number in the domain of a function is
called an independent variable.

A symbol that represents a number in the range of is called a dependent
variable.

In Example A, for instance, is the independent variable and is the depend-
ent variable. (We can choose the value of independently, but depends on the
value of .) Using function notation we can write , where represents the
area function.

It’s helpful to think of a function as a machine (see Figure 2). If is in the
domain of the function , then when enters the machine, it’s accepted as an input
and the machine produces an output according to the rule of the function.

For example, many cash registers used in retail stores have a button that, when
pressed, automatically computes the sales tax to be added to the total. This button
can be thought of as a function: An amount of money is entered as an input, and the
machine outputs an amount of tax. Both the domain and range of this function are
sets of positive numbers that represent amounts of money.

■ E X A M P L E  1  A Price Function

A cafe sells its basic coffee in three different cup sizes: 8, 10, and 14 ounces.
They charge $0.22 per ounce for the drinks.

(a) If the function is defined so that is the price of ounces of coffee, find
and interpret the value of .

(b) What are the domain and range of ?

S O L U T I O N

(a) The function value represents the output (price) of the function when
the input is 10 ounces of coffee. Thus .

(b) If we assume that the cafe sells only 8-, 10-, and 14-ounce coffee drinks, then
the only allowable inputs to the price function are the three numbers 8, 10,
and 14, so the domain of is the set . The range is the set of out-
puts that correspond to the inputs in the domain: {1.76, 2.20, 3.08}. ■
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4 CHAPTER 1 ■ Functions and Models

Although the rule defining a function may be clear, or you may have a list of
inputs and outputs for a function, it is often easiest to analyze a function if you can
visualize the relationship between the inputs and outputs. The most common
method for visualizing a function is to view its graph. If is a function, then its
graph is the set of input-output pairs plotted as points for all in the
domain of . In other words, the graph of consists of all points in the coordi-
nate plane such that and is in the domain of .

If the domain consists of isolated values, as in Example 1, the data are discrete
and the graph is a collection of individual points, called a scatter plot. On the other
hand, if the input variable represents a quantity that can vary continuously through
an interval of values, the graph is a curve or line (see Figure 3). We will define a
continuous function more formally in Chapter 2. For now, you can think of a con-
tinuous function as one for which you can sketch its graph without lifting your pen-
cil from the paper.

The graph of a function gives us a useful picture of the behavior or “life his-
tory” of a function. Since the -coordinate of any point on the graph is

, we can read the value of from the graph as being the height of the
graph above the point . (See Figure 4.) The graph of also allows us to picture the
domain of on the -axis and its range on the -axis as in Figure 5.

■ E X A M P L E  2  Reading Information from a Graph

The graph of a function is shown in Figure 6.

(a) Find the values of and .

(b) What are the domain and range of ?f

f �5�f �1�
f

0

y � ƒ(x)

domain

range

FIGURE 4

{x, ƒ}

ƒ

f(1)

f(2)

0 1 2 x

FIGURE 5

xx

y y

yxf
fx

f �x�y � f �x�
�x, y�y

f

x

y

50

20

40

60

1000

(a) Scatter plot   (b) Continuous function   

x

y

5

10

20

100

FIGURE 3
Graphs of functions

fxy � f �x�
�x, y�ff

x�x, f �x��
f

FIGURE 6

x

y

0

1

1

23827_ch01_ptg01_hr_001-011_23827_ch01_ptg01_hr_001-011  6/21/11  10:29 AM  Page 4

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 1.1 ■ Functions and Their Representations 5

S O L U T I O N

(a) We see from Figure 6 that the point lies on the graph of , so the value
of at 1 is . (In other words, the point on the graph that lies above

is 3 units above the -axis.)
When , the graph lies about 0.7 unit below the -axis, so we estimate

that .

(b) We see that is defined when , so the domain of is the closed
interval . Notice that takes on all values from to 4, so the range of
is

■

■ Representations of Functions
We have seen four possible ways to represent a function:

■ verbally (by a description in words)

■ numerically (by a table of values)

■ visually (by a graph)

■ algebraically (by an explicit formula)

If a single function can be represented in several ways, it is often useful to go
from one representation to another to gain additional insight into the function. But
certain functions are described more naturally by one method than by another. With
this in mind, let’s reexamine the four situations that we considered at the beginning
of this section.

A. The most useful representation of the area of a square plot of land as a function
of its side length is probably the algebraic formula , though it is pos-
sible to compile a table of values or sketch a graph (half a parabola). Because
a square has to have a positive side length, the domain is ,
and the range is also .

B. We are given a description of the function in words: is the human popula-
tion of the world at time . For convenience, we can measure in millions
and let represent the year 1900. Then the table of values of world popu-
lation at the left provides a convenient representation of this function. If we plot
these values, we get the scatter plot in Figure 7.
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6 CHAPTER 1 ■ Functions and Models

This scatter plot is a useful representation; the graph allows us to absorb all
the data at once. What about a formula? Of course, it’s impossible to devise an
explicit formula that gives the exact human population at any time . But
it is possible to find an expression for a function that approximates . In fact,
using methods explained in Section 1.5, we obtain the approximation 

Figure 8 shows that this function is a reasonably good “fit.” Notice that here we
have graphed a continuous curve as an approximation to discrete data. We will
soon see that the ideas of calculus can be applied to discrete data as well as
explicit formulas.

C. Again the function is described in words: is the cost of mailing a large
envelope with weight . The rule that the US Postal Service used as of 2011 is
as follows: The cost is 88 cents for up to 1 oz, plus 17 cents for each additional
ounce (or less), up to 13 oz. The table of values at the left is the most conven-
ient representation for this function, though it is possible to sketch a graph (see
Example 10).

D. The graph shown in Figure 1 is the most natural representation of the vertical
acceleration function . It’s true that a table of values could be compiled, and
it is even possible to devise an approximate formula. But everything a geolo-
gist needs to know––amplitudes and patterns––can be seen easily from the
graph. (The same is true for the patterns seen in electrocardiograms of heart
patients and polygraphs for lie-detection.)

In the next example we sketch the graph of a function that is defined verbally.

■ E X A M P L E  3  Drawing a Graph from a Verbal Description

When you turn on a hot-water faucet, the temperature of the water depends on
how long the water has been running. Draw a rough graph of as a function of
the time that has elapsed since the faucet was turned on.

S O L U T I O N
The initial temperature of the running water is close to room temperature because
the water has been sitting in the pipes. When the water from the hot-water tank
starts flowing from the faucet, increases quickly. In the next phase, is constant
at the temperature of the heated water in the tank. When the tank is drained, 
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SECTION 1.1 ■ Functions and Their Representations 7

decreases to the temperature of the water supply. This enables us to make the
rough sketch of as a function of in Figure 9. ■

A more accurate graph of the function in Example 3 could be obtained by using
a thermometer to measure the temperature of the water at 10-second intervals. In
general, researchers collect experimental data and use them to sketch the graphs of
functions, as the next example illustrates.

■ E X A M P L E  4  A Numerically Defined Function

The data shown in the margin give weekly sales figures for a video game shortly
after its release. Let be the number of copies sold, in thousands, during the
week ending weeks after the game’s release. Sketch a scatter plot of these data,
and use the scatter plot to draw a continuous approximation to the graph of .
Then use the graph to estimate the number of copies sold during the sixth week.

S O L U T I O N

We plot the five points corresponding to the data from the table in Figure 10. The
data points in Figure 10 look quite well behaved, so we simply draw a smooth
curve through them by hand as in Figure 11. (Later in this chapter you will see
how to find an algebraic formula that approximates the data.)

From the graph, it appears that , so we estimate that 12,500 units
were sold during the sixth week. ■

In the following example we start with a verbal description of a function in a
physical situation and obtain an explicit algebraic formula. The ability to do this is
a useful skill in solving optimization problems such as maximizing the profit of a
company.

■ E X A M P L E  5  Expressing a Cost as a Function

A rectangular storage container with an open top has a volume of . The
length of its base is twice its width. Material for the base costs $10 per square
meter; material for the sides costs $6 per square meter. Express the cost of materi-
als as a function of the width of the base.
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8 CHAPTER 1 ■ Functions and Models

S O L U T I O N

We draw a diagram as in Figure 12 and introduce notation by letting and be
the width and length of the base, respectively, and be the height.

The area of the base is , so the cost, in dollars, of the material
for the base is . Two of the sides have area and the other two have area

, so the cost of the material for the sides is . The total cost
is therefore

To express as a function of alone, we need to eliminate and we do so by
using the fact that the volume is . Thus

which gives

Substituting this into the expression for , we have

Therefore the equation

expresses as a function of . ■

In the next two examples we look at functions given by algebraic formulas.

■ E X A M P L E  6  A Function Defined by a Formula

If , evaluate

(a) (b) (c)

S O L U T I O N

(a) Replace by in the expression for :

(b)

(c) We first evaluate by replacing by in the expression for :
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SECTION 1.1 ■ Functions and Their Representations 9

Then we substitute into the given expression and simplify:

■

■ E X A M P L E  7  
Determining the Domain of a Function Defined by a Formula

Find the domain of each function.

(a) (b)

S O L U T I O N

(a) Because the square root of a negative number is not defined (as a real num-
ber), the domain of consists of all values of such that . This is
equivalent to , so the domain is the interval .

(b) Since

and division by 0 is not allowed, we see that is not defined when
or . Thus the domain of is . ■

The graph of a function is a curve or scatter plot in the -plane. But the ques-
tion arises: Which graphs in the -plane represent functions and which do not?
This is answered by the following test.

■ The Vertical Line Test A curve or scatter plot in the -plane is the
graph of a function of if and only if no vertical line intersects the graph
more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 13. 

f �1 	 h� � f �1�
h

�
�2h2 � h � 2� � �2 � 5 	 1�

h

�
2h2 � h � 2 � ��2�

h

�
2h2 � h

h
�

h�2h � 1�
h

� 2h � 1

t�x� �
1

x 2 � x
B�r� � sr 	 2

r 	 2 
 0rB
��2, ��r 
 �2

t�x� �
1

x 2 � x
�

1

x�x � 1�

x � 0t�x�
�x � x � 0, x � 1�t

xy
xy

xy
x

a

x=a

(a, b)

0 a

(a, c)

(a, b)

x=a

0 x

y

x

y

FIGURE 13

x � 1

The expression

in Example 6 is called a difference
quotient and occurs frequently in
calculus. We will will begin making
use of it in Chapter 2.
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If a function is given by a formula
and the domain is not stated 
explicitly, the convention is that 
the domain is the set of all numbers
for which the formula makes sense
and defines a real number.
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10 CHAPTER 1 ■ Functions and Models

If each vertical line intersects a curve only once, at , then exactly one
functional value is defined by . But if a line intersects the curve
twice, at and , then the curve can’t represent a function because a func-
tion can’t assign two different output values to an input .

■ E X A M P L E  8  Using the Vertical Line Test

Determine whether the graph represents a function.

(a) (b)

S O L U T I O N

(a) Notice that if we draw a vertical line on the scatter plot in Figure 14 at
or at , the line will intersect two of the points. Therefore the

scatter plot does not represent a function.

(b) No matter where we draw a vertical line on the graph in Figure 15, the line
will intersect the graph at most once, so this is the graph of a function. Notice
that the “gap” in the graph does not pose any trouble; it is acceptable for a
vertical line not to intersect the graph at all. ■

■ Mathematical Modeling
In Example B on page 5, we drew a scatter plot of the world population data and
then found an explicit equation that approximated the behavior of the population
data. The function we used is called a mathematical model for the population. A
mathematical model is a mathematical description (usually by means of a function
or an equation) of a real-world scenario, such as the demand for a company’s prod-
uct or the life expectancy of a person at birth. Although a function used as a model
may not exactly match observed data, it should be a close enough approximation to
allow us to understand and analyze the situation, and perhaps to make predictions
about future behavior.

Figure 16 illustrates the process of mathematical modeling. Given a real-world
problem, our first task is to formulate a mathematical model by identifying and
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y

FIGURE 15
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FIGURE 16 The modeling process
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SECTION 1.1 ■ Functions and Their Representations 11

naming the independent and dependent variables and making assumptions that sim-
plify the situation enough to make it mathematically tractable. We use our knowl-
edge of the physical situation and our mathematical skills to develop equations that
relate the variables. In situations where there is no physical law to guide us, we may
need to collect data (either from the Internet or a library or by conducting our own 
experiments) and examine the data in the form of a table or a graph. In the next few
sections, we will see a variety of different types of algebraic equations that are often
used as mathematical models.

The second stage is to apply the mathematics that we know (such as the calcu-
lus that will be developed throughout this book) to the mathematical model that we
have formulated in order to derive mathematical conclusions. Then, in the third
stage, we take those mathematical conclusions and interpret them as information
about the original real-world situation by way of offering explanations or making
predictions. The final step is to test our predictions by checking against new real
data. If the predictions don’t compare well with reality, we need to refine our model
or formulate a new model and start the cycle again. 

Keep in mind that a mathematical model is rarely a completely accurate repre-
sentation of a physical situation––it is an idealization. A good model simplifies real-
ity enough to permit mathematical calculations but is accurate enough to provide
valuable conclusions. It is important to realize the limitations of the model. In the
end, Mother Nature and financial markets have not always been predictable!

■ Piecewise Defined Functions
In some instances, no single formula adequately describes the behavior of a quan-
tity. A population may exhibit one growth pattern for 20 years but then change to a
different trend. In such cases we can use a function with different formulas in dif-
ferent parts of the domain. We call such functions piecewise defined functions, and
the next two examples illustrate the concept.

■ E X A M P L E  9  Graphing a Piecewise Defined Function

A function is defined by

Evaluate , , and and sketch the graph.

S O L U T I O N

Remember that a function is a rule. For this particular function the rule is the
following: First look at the value of the input . If it happens that , then
the value of is . On the other hand, if , then the value of 
is .

f

f �x� � �1 � x

x 2

if x � �1

if x � �1

f ��2� f ��1� f �1�

x x � �1
f �x� 1 � x x � �1 f �x�

x 2

Since �2 � �1, we have f ��2� � 1 � ��2� � 3.

Since �1 � �1, we have f ��1� � 1 � ��1� � 2.

Since 1 � �1, we have f �1� � 12 � 1.
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12 CHAPTER 1 ■ Functions and Models

How do we draw the graph of ? We observe that if , then
so the part of the graph of that lies to the left of must

coincide with the line , which has slope and -intercept 1. (Linear
equations are reviewed in Section 1.3.) If , then , so the part of
the graph of that lies to the right of the line must coincide with the
graph of , which is a parabola. This enables us to sketch the graph in Fig-
ure l7. The solid dot indicates that the point is included on the graph; the
open dot indicates that the point is excluded from the graph. ■

■ E X A M P L E  10  A Step Function

In Example C at the beginning of this section we considered the cost of
mailing a large envelope with weight . In effect, this is a piecewise defined func-
tion because, from the table of values on page 6, we have

The graph is shown in Figure 18. You can see why functions similar to this one
are called step functions—they jump from one value to the next. ■

■ Symmetry
If a function satisfies for every number in its domain, then is
called an even function. For instance, the function is even because

The geometric significance of an even function is that its graph is symmetric with
respect to the -axis (see Figure 19). This means that if we have plotted the graph
of for , we obtain the entire graph simply by reflecting this portion about the
-axis.

If satisfies for every number in its domain, then is called
an odd function. For example, the function is odd because

The graph of an odd function is symmetric about the origin (see Figure 20). If we
already have the graph of for , we can obtain the entire graph by rotating
this portion through about the origin. Note that a function does not have to be
either even or odd; many are neither.

f x � �1
f �x� � 1 � x, f x � �1

y � 1 � x �1 y
x � �1 f �x� � x 2

f x � �1
y � x 2

��1, 2�
��1, 1�

C�w�
w

C�w� �

0.88

1.05

1.22

1.39

if  0 � w � 1

if  1 � w � 2

if  2 � w � 3

if  3 � w � 4
�
�
�

fxf ��x� � f �x�f
f �x� � x 2

f ��x� � ��x�2 � x 2 � f �x�

y
f x � 0

y
f f ��x� � �f �x� x f

f �x� � x 3

f ��x� � ��x�3 � �x 3 � �f �x�

x � 0f
180�

2

y

_1

1

x

FIGURE 17

FIGURE 18

C
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1.50
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w
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An even function 

x

FIGURE 19   

y
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x
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FIGURE 20 An odd function
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y
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SECTION 1.1 ■ Functions and Their Representations 13

■ E X A M P L E  11  Testing for Symmetry

Determine whether each of the following functions is even, odd, or neither even
nor odd.

(a) (b) (c)

S O L U T I O N
(a)

Therefore is an odd function.

(b)

So is even.

(c)

Since and , we conclude that is neither even
nor odd. ■

The graphs of the functions in Example 11 are shown in Figure 21. Notice that
the graph of is symmetric neither about the -axis nor about the origin.

f �x� � x 5 	 x t�x� � 1 � x 4 h�x� � 2x � x 2

f ��x� � ��x�5 	 ��x� � ��1�5x 5 	 ��x�

� �x 5 � x � ��x 5 	 x�

� �f �x�

f

t��x� � 1 � ��x�4 � 1 � x 4 � t�x�

t

h��x� � 2��x� � ��x�2 � �2x � x 2

h��x� � h�x� h��x� � �h�x� h

FIGURE 21 (a) Odd function (b) Even function (c) Neither even nor odd 

1

1

y

x

g 1

1 x

y

h1

_1

1

y

x

f

_1

h y

1. Price function A nursery sells potting soil for $0.40 per
pound, and the soil is available in 4-lb, 10-lb, and 
50-lb bags. If is the price of a bag of potting soil that
weighs pounds,

(a) find and interpret the value of .

(b) determine the domain and range of .

2. Price function An Internet retailer charges $4.99 to
ship an order that totals less than $25 and $5.99 for an
order up to $75, and offers free shipping for an order over
$75. If is the shipping cost for an order totaling 

dollars, state the domain and range of .

f �x�
x

f �10�
f

t� p�
p t

3. Population function Let be the population, in
thousands, of a city years after January 1, 2000. Interpret
the equation . What does represent?

4. Blood alcohol content Let be the blood alcohol
content (measured as the percentage by volume of alcohol
in the blood) of a dinner guest hours after her arrival.
Interpret the equation in this context.

5. Fuel economy Let be the average fuel economy of
a particular car, measured in miles per gallon, when the
car is being driven at . What does the equation

say in this context?

B�t�

t
B�1.25� � 0.06

F�s�

s mi�h
F�65� � 24.7

P�t�
t

P�8� � 64.3 P�4.5�

■ Exercises 1.1
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14 CHAPTER 1 ■ Functions and Models

6. Loan payments Let be the number of $300
monthly payments required to repay an $18,000 auto loan
when the interest rate is percent. What does the equation

say in this context?

7. The graph of a function is given.

(a) State the value of .

(b) Estimate the value of .

(c) For what values of is ?

(d) Estimate the values of such that .

(e) State the domain and range of .

8. The graphs of and are given.

(a) State the values of and .

(b) For what values of is ?

(c) Estimate the solutions of the equation .

(d) State the domain and range of 

(e) State the domain and range of .

9. Earthquakes Figure 1 was recorded by an instrument
operated by the California Department of Mines and 
Geology at the University Hospital of the University of
Southern California in Los Angeles. Use it to estimate the
range of the vertical ground acceleration function at USC
during the Northridge earthquake.

10. In this section we discussed examples of ordinary, every-
day functions: Population is a function of time, postage
cost is a function of weight, water temperature is a func-
tion of time. Give three other examples of functions from
everyday life that are described verbally. What can you
say about the domain and range of each of your functions?
If possible, sketch a rough graph of each function.

11. Weight function The graph gives the weight of a cer-
tain person as a function of age. Describe in words how 

r
N�6.5� � 73

N�r�

f

f ��1�
f �2�

x f �x� � 2

x f �x� � 0

f

y

0 x

1

1

f

t�3�f ��4�
f �x� � t�x�x

f �x� � �1

f.

t

g

x

y

0

f

2

2

t

this person’s weight varies over time. What do you think
happened when this person was 30 years old?

12. Distance function The graph gives a salesman’s dis-
tance from his home as a function of time on a certain day.
Describe in words what the graph indicates about his
travels on this day.

13. Temperature function You put some ice cubes in a
glass, fill the glass with cold water, and then let the glass
sit on a table. Describe how the temperature of the water
changes as time passes. Then sketch a rough graph of the
temperature of the water as a function of the elapsed time.

14. Hours of daylight Sketch a rough graph of the number
of hours of daylight as a function of the time of year.

15. Temperature function Sketch a rough graph of the
outdoor temperature as a function of time during a typical
spring day.

16. Market value Sketch a rough graph of the market value
of a new car as a function of time for a period of 20 years.
Assume the car is well maintained.

17. Retail sales Sketch a rough graph of the average daily
amount of a particular type of coffee bean (measured in
pounds) sold by a store as a function of the price of the
beans.

18. Temperature function You place a frozen pie in an
oven and bake it for an hour. Then you take it out and let
it cool before eating it. Describe how the temperature of
the pie changes as time passes. Then sketch a rough graph
of the temperature of the pie as a function of time.

19. Lawn height A homeowner mows the lawn every
Wednesday afternoon. Sketch a rough graph of the height
of the grass as a function of time over the course of a four-
week period.

Age
(years)

Weight
(pounds)

0

150

100

50

10

200

20 30 40 50 60 70

8 AM 10 NOON 2 4 Time
(hours)

Distance
from home

(miles)

6 PM
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SECTION 1.1 ■ Functions and Their Representations 15

20. Air travel An airplane flies from an airport and lands an
hour later at another airport, 400 miles away. If repre-
sents the time in minutes since the plane has left the termi-
nal building, let be the horizontal distance traveled
and be the altitude of the plane.

(a) Sketch a possible graph of .

(b) Sketch a possible graph of .

(c) Sketch a possible graph of the ground speed.

21. Phone subscribers The number (in millions) of US
cellular phone subscribers is shown in the table. (End of
year estimates are given.)

(a) Use the data to sketch a rough graph of as a function
of .

(b) Use your graph to estimate the number of cell-phone
subscribers at the end of 2001 and 2005.

22. Temperature Temperature readings (in °F) were
recorded every two hours from midnight to 2:00 PM in
Baltimore on September 26, 2007. The time was mea-
sured in hours from midnight.

(a) Use the readings to sketch a rough graph of as a
function of 

(b) Use your graph to estimate the temperature at 
11:00 AM.

23. If , find , , , ,
, , , , , and .

24. If , find , , , , and
.

25–30 ■ Evaluate the difference quotient for the given func-
tion. Simplify your answer.

25. ,    

26. ,    

27. ,    

28. ,    

29. ,    

t

x�t�
y�t�

x�t�
y�t�

N

N
t

T

t

T
t.

f ��a�f �a�f ��2�f �2�f �x� � 3x 2 � x 	 2
f �a 	 h�� f �a��2f �a 2�f �2a�2 f �a�f �a 	 1�

t�x � 2�t�x�t��1�t�3�t�t� � 4t � t 2

t�x 	 h�

f �4 	 h� � f �4�
h

f �x� � x 2 	 1

f �t 	 h� � f �t�
h

f �x� � 2x 2 � x

f �3 	 h� � f �3�
h

f �x� � 4 	 3x � x 2

f �a 	 h� � f �a�
h

f �x� � x 3

f �x� � f �a�
x � a

f �x� �
1

x

30. ,    

31–34 ■ Find the domain of the function.

31. 32.

33. 34.

35–36 ■ Determine whether the scatter plot is the graph of a
function of . Explain how you reached your conclusion.

35.

36.

37–40 ■ Determine whether the curve is the graph of a func-
tion of . If it is, state the domain and range of the function.

37. 38.

39. 40.

f �x� � f �1�
x � 1

f �x� �
x 	 3

x 	 1

f �x� �
3x 	 4

x 2 � x
f �x� �

x

3x � 1

t�u� � su � 4 	 1.5uf �t� � s2t 	 6

x

y

x

300

400

500

20151050

N

1

6

5

4

3

2

10080604020 x0

x

y

x0 1

1

y

x0 1

1

y

x0 1

1

y

x0

1

1

t 1996 1998 2000 2002 2004 2006

N 44 69 109 141 182 233

t 0 2 4 6 8 10 12 14

T 68 65 63 63 65 76 85 91
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16 CHAPTER 1 ■ Functions and Models

41–44 ■ Evaluate , , and for the piecewise
defined function. Then sketch the graph of the function.

41.

42.

43.

44.

45–48 ■ Find a formula for the described function and state
its domain.

45. A rectangle has perimeter 20 m. Express the area of the
rect angle as a function of the length of one of its sides.

46. A rectangle has area 16 m . Express the perimeter of the
rect angle as a function of the length of one of its sides.

47. Surface area An open rectangular box with volume 
2 m has a square base. Express the surface area of the box
as a function of the length of a side of the base.

48. Height and width A closed rectangular box with vol-
ume has length twice the width. Express the height of
the box as a function of the width.

49. Box design A box with an open top is to be constructed
from a rectangular piece of cardboard with dimensions 
12 in. by 20 in. by cutting out equal squares of side at
each corner and then folding up the sides as in the figure.
Express the vol ume of the box as a function of .

50. Taxi fares A taxi company charges two dollars for the
first mile (or part of a mile) and 20 cents for each succeed-
ing tenth of a mile (or part). Express the cost , in dollars,
of a ride as a function of the distance traveled, in miles,
for , and sketch the graph of this function.

51. Income tax In a certain country, income tax is assessed
as follows. There is no tax on income up to $10,000. Any
income beyond $10,000 is taxed at a rate of 10%, up to 
an income of $20,000. Any income over $20,000 is taxed
at 15%.

f �2�f �0�f ��3�

f �x� � �x 	 2

1 � x

if x � 0

if x � 0

f �x� � �3 �
1
2 x

2x � 5

if x � 2

if x � 2

f �x� � �x 	 1

x 2

if x � �1

if x � �1

f �x� � ��1

7 � 2x

if x � 1

if x � 1

2

3

8 ft3

x

xV

20

12
x

x

x

x

x x

x x

C
x

0 � x � 2

(a) Sketch the graph of the tax rate as a function of the
income .

(b) How much tax is assessed on an income of $14,000?
On $26,000?

(c) Sketch the graph of the total assessed tax as a func-
tion of the income .

52. The functions in Example 10 and Exercises 50 and 51(a)
are called step functions because their graphs look like
stairs. Give two other examples of step functions that arise
in everyday life.

53–54 ■ Graphs of and are shown. Decide whether each
function is even, odd, or neither. Explain your reasoning.

53. 54.

55. (a) If the point is on the graph of an even function,
what other point must also be on the graph?

(b) If the point is on the graph of an odd function,
what other point must also be on the graph?

56. A function has domain and a portion of its graph
is shown.

(a) Complete the graph of if it is known that is even.

(b) Complete the graph of if it is known that is odd.

57–62 ■ Determine whether is even, odd, or neither. If 
you have a graphing calculator, use it to check your answer
visually.

57. 58.

59. 60.

61. 62.

T
I

f t

y

x

f

g

y

x

f

g

�5, 3�

�5, 3�

f ��5, 5�

f f

f f

x0

y

5_5

f

f �x� �
x

x 2 	 1
f �x� �

x 2

x 4 	 1

f �x� � x � x �f �x� �
x

x 	 1

f �x� � 1 	 3x 3 � x 5f �x� � 1 	 3x 2 � x 4

R
I

23827_ch01_ptg01_hr_012-021_23825_ch01_ptg01_hr_012-021  6/21/11  10:30 AM  Page 16

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 1.2 ■ Combining and Transforming Functions 17

■ Challenge Yourself

63. If and are both even functions and , is even? If and are both
odd functions, is odd? What if is even and is odd? Justify your answers.

64. Window area A Norman window has the shape of a rectangle surmounted by a
semicircle. If the perimeter of the window is 30 ft, express the area of the window as
a function of the width of the window.

f t h�x� � f �x� 	 t�x� h f t

h f t

A
x

x

©
 B

ro
ok

s 
Co

le
 / 

Ce
ng

ag
e 

Le
ar

ni
ng

Combining and Transforming Functions
In this section we form new functions by combining existing functions in various
ways. We also learn how to transform functions by shifting, stretching, or reflect-
ing their graphs. These skills will enable you to use a basic set of functions, studied
in the sections ahead, to design specific functions that model a wide variety of 
applications.

■ Combinations of Functions
Two functions and can be combined to form new functions using the operations
of addition, subtraction, multiplication, and division in a manner similar to the way
we add, subtract, multiply, and divide real numbers. For instance, we can define a
new function that is the sum of and by the equation . This
means that the output of the new function is the sum of the outputs of the indi-
vidual functions and . This definition makes sense if both and are
defined. Thus the domain of the function consists of only those values that belong
to both the domain of and the domain of .

Suppose a company has two different shipping centers, one on the West Coast
and the other on the East Coast. If is the number of packages shipped from the
western facility weeks after the start of the year, and is the number of pack-
ages shipped from the eastern facility weeks after the start of the year, then we can
define a new function by

Thus measures the combined number of packages sent from both shipping cen-
ters weeks after the start of the year. Notice that the input for each function is the
same; if the inputs of two functions are not measuring the same quantities, the sum
of the functions is not meaningful.

We can subtract, multiply, or divide functions in a similar way. For instance,
means that the output of the function is the product of the outputs

1.2

f t

h f t h�x� � f �x� 	 t�x�
h

f t f �x� t�x�
h

f t

W�t�
t E�t�

t
N�t�

N�t� � W�t� 	 E�t�

N�t�
t

k�x� � f �x� t�x� k
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18 CHAPTER 1 ■ Functions and Models

of the functions and . The domain of each of these new functions consists of all
the numbers that appear in both the domain of and the domain of , with the excep-
tion that if we divide by , we must ensure that no division by 0 will occur. So the
domain of is all values shared by the domains of and where

.

■ E X A M P L E  1  Combining Two Functions

If and , find equations and the domains for the functions
and .

S O L U T I O N

The domain of is , all the real numbers greater than or 
equal to 0. The domain of is , all real numbers. The domain of

consists of those values that are shared by both these domains,
namely . The formula for the product function is

Similarly,

Notice that when , so 3 must be excluded from the domain of .
Thus the domain of is all real numbers greater than or equal to 0, except 3. In
set-builder notation, we write . ■

■ E X A M P L E  2  Combining Revenue and Cost Functions

Suppose the annual revenue, in millions of dollars, of a company is
, where is measured in years and corresponds 

to the year 2000. The annual cost, in millions of dollars, for the company is
.

(a) Find a formula for the function .

(b) Compute and interpret .

S O L U T I O N

(a)

(b) We can find by subtracting the output values of the functions and ,
or we can use the formula from part (a) directly:

Notice that is the annual revenue minus the annual cost, so it represents
the annual profit for the company. Since corresponds to 2007, and the 

f t

f t

q�x� � f �x��t�x� f t

t�x� � 0

f t

N�v� � sv T�v� � 3 � v
A�v� � N�v� T�v� B�v� � N�v��T�v�

N�v� � sv �0, 
�
T�v� � 3 � v �

A�v� � N�v� T�v�
�0, 
�

A�v� � N�v� T�v� � sv �3 � v�

B�v� �
N�v�
T�v�

�
sv

3 � v

T�v� � 0 v � 3 B
B

	v � v � 0, v � 3


R�t� � 0.2t 2 	 3t 	 5 t t � 0

C�t� � 4t 	 9

P�t� � R�t� � C�t�
P�7�

P�t� � R�t� � C�t� � �0.2t 2 	 3t 	 5� � �4t 	 9�

� 0.2t 2 	 3t 	 5 � 4t � 9

� 0.2t 2 � t � 4

P�7� R C

P�7� � 0.2�72� � 7 � 4 � �1.2

P�t�
t � 7
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SECTION 1.2 ■ Combining and Transforming Functions 19

f

g

FIGURE 1

f{©}

h

The h machine is composed of 
the g machine (first) and then
the f machine.

x

©

(input)

(output)

output is negative, we know that during 2007 the company lost 1.2 million 
dollars. ■

■ Composition of Functions
There is another way of combining two functions to form a new function. As a 
simple illustration, suppose that a company’s annual profit for year is given by

and the total amount of tax the company pays, , is determined by its profit
. Since the tax paid is a function of profit and profit is, in turn, a function of , it

follows that the amount of tax paid is ultimately a function of . In effect, the out-
put of the profit function can be used as the input for the tax function , and
is the amount of tax the company paid during year . This new function is called the
composition of the functions and .

If we have equations for two functions, we can write a formula for their com-
position. For example, suppose and . Now is a
function of and is a function of , so can be considered as a function of . We
compute this by substitution:

■ Definition Given two functions and , the composition of and is
defined by

The domain of is the set of all values in the domain of such
that is in the domain of . In other words, is defined whenever both
and are defined. It is probably easier to picture the composition of and
with a machine diagram (see Figure 1).

■ E X A M P L E  3  Composing Two Functions

Let and . If and , compute
and .

S O L U T I O N

First let’s trace the path the input 5 takes under the function . Since
, we first input 5 into the inner function , where . 

The output 2 is then used as an input into the outer function , which gives 
an output of . Thus . Similarly,

. Notice that the original input always goes through
the inner function first, and the resulting output is used as an input into the outer
function.

We can also write formulas for and :

Then it is easy to compute

and    ■

t
P�t� f �P�
P t

t
P f f �P�t��

t
P f

y � f �t� � st t � t�x� � x 2 � 1 y
t t x y x

y � f �t� � f �t�x�� � f �x 2 � 1� � sx 2 � 1

f t f t

h�x� � f �t�x��

h�x� � f �t�x�� x t

t�x� f f �t�x�� t�x�
f �t�x�� f t

f �x� � x 2
t�x� � x � 3 h�x� � f �t�x�� k�x� � t� f �x��

h�5� k�5�

h
h�5� � f �t�5�� t t�5� � 2

f
h�5� � f �t�5�� � f �2� � 4

k�5� � t� f �5�� � t�25� � 22

h�x� � f �t�x�� � f �x � 3� � �x � 3�2

k�x� � t� f �x�� � t�x 2� � x 2 � 3

h�5� � �5 � 3�2 � 22 � 4 k�5� � 52 � 3 � 25 � 3 � 22

h k

f�2� � 22 � 4
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20 CHAPTER 1 ■ Functions and Models

NOTE: You can see from Example 3 that, in general, .
Remember, the notation means that the function is applied first and then
is applied second. In Example 3, is the function that first subtracts 3 and then
squares; is the function that first squares and then subtracts 3.

■ E X A M P L E  4  Interpreting a Composition of Functions

The altitude of a small airplane hours after taking off is given by
thousand feet, where . The air temperature in the

area at an altitude of thousand feet is degrees Fahrenheit.

(a) What does the composition measure?

(b) Compute and interpret your result in this context.

(c) Find a formula for .

(d) Does give a meaningful result in this context?

S O L U T I O N

(a) The hours that the airplane has been flying is first used as an input into the
inner function , which outputs the altitude of the plane in thousands of
feet. This altitude in turn is used as an input into the outer function , which
outputs a temperature in degrees Fahrenheit. Thus is the air temperature at
the airplane’s location hours after take-off.

(b) The input 1 first enters the function , giving . We then input 3.9
into the function , which gives . This means that 1 hour after
take-off, the air temperature at the plane’s location is .

(c)

Using this direct formula, you can verify that as we found in
part (b).

(d) Although we could compute a formula for , it wouldn’t be a meaning-
ful quantity here. The inner function outputs a temperature in , but this is
not an appropriate value to pass to the outer function as an input, because
is a function of , a number of hours. ■

So far we have used composition to build complicated functions from simpler
ones. But we will see in later chapters that in calculus, it is often useful to be 
able to decompose a complicated function into simpler ones, as in the following
example.

■ E X A M P L E  5  Decomposing a Function

If , find functions and such that .

S O L U T I O N

The formula for says: First double and subtract 1, then cube the result. One
option is to think of as the inner function and call it . Then 

f �t�x��
t� f �x��

t
A�t� � �2.8t 2 � 6.7t 0 � t � 2

x f �x� � 68 � 3.5x

h�t� � f �A�t��
h�1�

h�t�
A� f �x��

t
A A�t�

f
h

t

A A�1� � 3.9
f f �3.9� � 54.35

54.35�F

h�t� � f �A�t�� � f ��2.8t 2 � 6.7t� � 68 � 3.5��2.8t 2 � 6.7t�
� 9.8t 2 � 23.45t � 68

h�1� � 54.35

A� f �x��
f �F

A A
t

L�t� � �2t � 1�3 f t L�t� � f �t�t��

L t
2t � 1 t

f �t�x�� � t� f �x��
ftf �t�x��

It is not important what letter we
use to represent the variable in the
outer function . The function

is the same function as
or .

f
f �x� � x 3

f �a� � a 3 f �q� � q 3
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and . The outer function is the cubing function, so if
we let , then

Note that there are other choices we could have made, such as and
, but the first solution is probably the most useful one. ■

■ Transformations of Functions
Next we discuss how to modify a function to change the shape or location of its
graph. Armed with these techniques, we can use familiar graphs to design functions
that will fit a wide variety of applications. The first of these transformations we will
consider are called translations. If you compare the graphs of and

in Figure 2, you will notice that the shapes are identical, but the sec-
ond graph is located 3 units higher on the coordinate plane. The second function
increases each output of the first function by 3, so each point on its graph moves 
3 units higher. In effect, we have shifted the entire graph upward 3 units. Similarly,

shifts the graph of downward 3 units.

Next compare the graph of with the graph of in Fig-
ure 3. The graph of is the same as the graph of but shifted 
3 units to the left. To see why this is the case, note that if , then

, so the output corresponding to in the graph of is
plotted with in the graph of , 3 units to the left. Similarly,
shifts the graph of to the right 3 units.

■ Vertical and Horizontal Shifts Suppose is a positive number.

translation of the graph of equation

shift units upward

shift units downward

shift units to the right

shift units to the left

t�t� � 2t
f �x� � �x � 1�3

y � f �x�
y � f �x� � 3

y � f �x� � 3 y � f �x�

y � f �x� y � f �x � 3�
y � f �x � 3� y � f �x�

t�x� � f �x � 3�
t�1� � f �1 � 3� � f �4� x � 4 f

x � 1 t y � f �x � 3�
f

c

y � f �x�

c y � f �x� � c

c y � f �x� � c

c y � f �x � c�
c y � f �x � c�

this is 

x

y

4

1

_2

0

y =ƒ

y=ƒ-3

y=ƒ+3

3

3

FIGURE 2
Vertical translations of the graph of f

x741

y

0

y =ƒ

3 3

y=f(x-3)y=f(x+3)

FIGURE 3 
Horizontal translations of the graph of ƒ

L�t� � f �t�t�� � f �2t � 1� � �2t � 1�3

L�t� � �t�t��3
t�t� � 2t � 1

f �x� � x 3
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We can also stretch (or compress) graphs. For instance, compare the graphs of
and in Figure 4. The second graph has a shape similar to the

first, but it has been stretched vertically by a factor of 2. Each output of the original
function is doubled, so the vertical distance between each point of the graph and the
-axis is doubled. If we graph , each output is halved, so the graph appears

to be compressed vertically (toward the -axis).

Now compare the graphs of and in Figure 5. This time we
have compressed the graph horizontally (toward the -axis) by a factor of 2. To see
why this occurs, observe that if , then , so the
output corresponding to in the graph of is plotted with in the graph
of , half the distance from the -axis. Similarly, the graph of is the graph
of stretched horizontally by a factor of 2.

■ Vertical and Horizontal Stretching Suppose .

transformation of the graph of equation

stretch vertically by a factor of 

compress vertically by a factor of 

compress horizontally by a factor of 

stretch horizontally by a factor of 

Finally, we can reflect graphs in either a vertical or horizontal direction. If we
compare the graphs of and in Figure 6, the graph of
is the graph of but flipped upside down. Each point on the original
graph is replaced by the point , so the graph appears to be reflected about the 

y � 2 f �x�y � f �x�

y � 1
2 f �x�x

x

FIGURE 4
Stretching the graph of f vertically

x

y

0

y=ƒ

y=   ƒ
1
2

y=2ƒ

FIGURE 5
Stretching the graph of f horizontally 

x

y

y=ƒy=f(2x) y=f”  x’   
1
2

0

y � f �2x�y � f �x�
y
t�1� � f �2 � 1� � f �2�t�x� � f �2x�

x � 1fx � 2
y � f (1

2 x)yt

y � f �x�

c � 1

y � f �x�

y � c f �x�c

y � 1
c f �x�c

y � f �cx�c

y � f (1
c x)c

y � �f �x�y � �f �x�y � f �x�
�x, y�y � f �x�

�x, �y�

FIGURE 6
Reflecting the graph of f 

x

y

y=ƒy=f(_x)

y=_ƒ

0
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SECTION 1.2 ■ Combining and Transforming Functions 23

-axis. If you compare the graph of with the graph of in Fig-
ure 6, you’ll notice that this time the -values are made opposite, so the graph
appears reflected about the -axis.

■ Vertical and Horizontal Reflections

reflection of the graph of equation

reflect about the -axis

reflect about the -axis

Figure 7 illustrates several combinations of various transformations.

■ E X A M P L E  6  Sketching Transformations of a Function

Given the graph of , use transformations to graph ,
, , , and .

S O L U T I O N

The graph of the square root function is shown in Figure 8(a). If we let
, then , so the graph is shifted 2 units down-

ward. Similarly, shifts the graph 2 units to the right,
reflects the graph about the -axis,

stretches the graph vertically by a factor of 2, and reflects the
graph about the -axis.

■

y � f ��x�y � f �x�x
x

y

y � f �x�

y � �f �x�x

y � f ��x�y

x

y

y=f(x)

y=3f(x)

y=f(_x)

y=f(x-3)+1

y=_2f(x)

y=f”  x’-1   
1
2

0

FIGURE 7

y � sx � 2y � sx
y � s�xy � 2sxy � �sxy � sx � 2

y � sx
y � sx � 2 � f �x� � 2f �x� � sx
y � sx � 2 � f �x � 2�

y � 2sx � 2 f �x�xy � �sx � �f �x�
y � s�x � f ��x�

y

(f ) y=œ„„_x

0 x

y

(e) y=2œ„x

0 x

y

(d) y=_œ„x

0 x

y

(c) y=œ„„„„x-2

20 x

y

(b) y=œ„-2x

_2

0 x

y

(a) y=œ„x

1

10 x

y

FIGURE 8
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24 CHAPTER 1 ■ Functions and Models

■ E X A M P L E  7  Sketching Multiple Transformations

Given the graph of the function shown in Figure 9, sketch the graphs of
(a) and (b) .

S O L U T I O N

(a) The graph of is the graph of shifted 3 units to the left. 
If we then shift the graph down 1 unit, we have the graph of

shown in Figure 10.

(b) The graph of is the graph of compressed vertically by a
factor of 3 and reflected across the -axis. [See Figure 11(a).] Shift the result-
ing graph up 2 units to arrive at the graph of as shown in
Figure 11(b).

■

■ E X A M P L E  8  Interpreting Transformations of Functions

Let be the amount, in thousands of dollars, that a manufacturer charges for
an order of thousand computer memory chips.

(a) The price (in thousands of dollars) that a rival manufacturer charges to 
provide thousand chips is given by . How does the rival
company’s price compare to that of the first company?

(b) What if the amount that the rival company charges for an order of thousand
chips is given by ?

(c) What if the rival charges to provide thousand chips?

S O L U T I O N

(a) The output of is always 12 greater than the output of (for the same input),
so the rival supplier charges $12,000 more for each order than the first 
manufacturer.

(b) The output of is 1.4 times the output of , so the price that the rival com-
pany charges is 1.4 times greater, or 40% more, than the first manufacturer’s
price.

y � x 2

t�x� � �
1
3 x 2 � 2f �x� � �x � 3�2 � 1

y � x 2y � �x � 3�2

f �x� � �x � 3�2 � 1

y � �
1
3 x 2 y � x 2

x
t�x� � �

1
3 x 2 � 2

x

y

2

2

FIGURE 11

x

y

2

2

y=   - ≈y=   - ≈
1
3(a) y=   - ≈+2

1
3(b)

C�x�
x

x f �x� � C�x� � 12

x
t�x� � 1.4C�x�

h�x� � C�x � 2� x

f C

t C

FIGURE 9

x

y

4

2

2_2

y=≈

0

FIGURE 10

x

y

2

2_2_4

(_3, _1)

0
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SECTION 1.2 ■ Combining and Transforming Functions 25

(c) The graph of is the graph of shifted two units to the right. 
This means that for the same price, the rival manufacturer will supply 
2000 more chips than the first manufacturer. For instance, if then

. ■
x � 10

h�10� � C�8�

h�x� C�x�

1. Class attendance Let be the number of male
students and the number of female students that
attended a math class at a local university on day of this
year. If we define a function where ,
describe what measures.

2. Price of gas Let be the total amount charged to a
consumer for gallons of premium gasoline at a particular
gas station, and let be the total amount of tax the
station pays for gallons of the gasoline. What does the
function measure?

3. Bank holdings Let be the amount of gold, in
ounces, that a bank has in its vault at the end of the th
day of this year, and let be the value, in dollars, of
one ounce of gold at the end of the th day of this year.
What does the function measure?

4. Investments Let be the daily closing price of one
share of General Electric stock days after January 1,
2010, and let be the number of shares owned by a
pension fund at the end of that same day. What does the
function measure?

5. Crops A farm devotes acres of its land to growing
corn during year . If is the number of bushels of
corn the farm yielded during year , what does the func-
tion represent?

6. Phone usage Let be the total number of minutes
Kathi talked on her cellular phone during the th month 
of last year, and let be the amount she paid for her
phone service during that month. What does the function

represent?

7. Salary An employee’s annual salary, in thousands of
dollars, is given by , where is the year
with corresponding to 2000, and
is the total amount of commissions, in thousands of dol-
lars, the employee earned that year.

(a) Find a formula for the function .

(b) Compute and interpret your result in this context.

8. Revenue and profit The annual revenue of a 
small store, in thousands of dollars, is given by

, where is the year, with corre-

M�t�
F�t�

t
t t�t� � M�t� � F�t�

t

A�x�
x

T�x�
x

f �x� � A�x� � T�x�

t�n�
n

v�n�
n

f �n� � t�n�v�n�

P�t�
t

Q�t�

t�t� � P�t� Q�t�

A�x�
x B�x�

x
C�x� � B�x��A�x�

M�n�
n

C�n�

h�n� � C�n��M�n�

S�t� � 42 � 1.8t t
t � 0 C�t� � 16.4 � 0.6t

f �t� � S�t� � C�t�
f �4�

R�t� � 645 � 21t t t � 0

■ Exercises 1.2

sponding to 2000. Similarly, the store’s annual profit is
given by .

(a) Write a formula for the annual cost function for
the store.

(b) Compute and interpret your result in this context.

9. If and , write a formula for
each of the following functions.

(a) (b)

(c) (d)

10. If and , write a formula for
each of the following functions. What is the domain?

(a) (b)

(c) (d)

11. If , , , and
, compute and .

12. If , , , and
, compute and .

13. If , , , and
, compute and .

14. If , , , and
, compute and .

15–20 ■ Find the functions and .

15. ,    

16. ,    

17. ,    

18. ,    

19. ,    

20. ,    

21. Surfboard production Let be the number of surf-
boards a manufacturer produces during year . If 
is the profit, in thousands of dollars, the manufacturer
earns by selling surfboards, what does the function

represent?

C�3�

f �x� � x 2 � 5x t�x� � 3x � 12

A�x� � f �x� � t�x� B�x� � f �x� � t�x�
C�x� � f �x� t�x� D�x� � f �x��t�x�

p�x� � sx � 1 q�x� � 2x � 4

A�x� � p�x� � q�x� B�x� � p�x� � q�x�
C�x� � p�x� q�x� D�x� � p�x��q�x�

f �x� � x 2 � 1 t�t� � 4t � 2 A�t� � f �t�t��
B�x� � t� f �x�� A�3� B�3�

h�n� � 2 � 5n p�n� � n2 � 3 u�n� � h�p�n��
v�n� � p�h�n�� u�2� v�2�

M�t� � t � st N�t� � 3t � 7 C�t� � M�N�t��
D�t� � N�M�t�� C�3� D�4�

f �t� � t 3 � 2 t�x� � 2x � 3 p�x� � f �t�x��
r�t� � t� f �t�� p��1� r��2�

p�x� � f �t�x�� q�x� � t� f �x��

f �x� � x 2 � 1 t�x� � 2x � 1

f �x� � 1 � x 3
t�x� � 1�x

f �x� � x 3 � 2x t�x� � 1 � sx

f �x� � 1 � 3x t�x� � 5x 2 � 3x � 2

f �x� � x �
1

x
t�x� � x � 2

f �x� � s2x � 3 t�x� � x 2 � 1

N�t�
t P�x�

x
f �t� � P�N�t��

P�t� � 175 � 16t � 0.3t 2

C�t�

23827_ch01_ptg01_hr_022-031_23825_ch01_ptg01_hr_022-031  6/21/11  10:30 AM  Page 25

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



26 CHAPTER 1 ■ Functions and Models

22. Car maintenance If is the average annual cost 
for maintaining a Honda Civic that has been driven
thousand miles and is the number of miles on Sean’s
Honda Civic years after he purchased it, what does the
function represent?

23. Carpooling As fuel prices increase, more drivers car-
pool. The function gives the average percentage of
commuters who carpool when the cost of gasoline is
dollars per gallon. If is the average monthly price (per
gallon) of gasoline, where is the time in months begin-
ning January 1, 2011, which composition gives a meaning-
ful result, or ? Describe what the resulting
function measures.

24. Home prices People are moving into a small commu-
nity and driving the home prices higher. Suppose is
the population of the community years after January 1,
2000, and is the median home price when the popula-
tion of the area is people. Which function gives a mean-
ingful result, or ? What does it represent in
this context?

25. Scuba diving The pressure a scuba diver experi-
ences at a depth of feet is approximately

(pounds per square inch).
Suppose that for the first portion of Paul’s dive, his depth
after minutes is feet.

(a) Write a formula for the function .
What does measure?

(b) Compute and interpret your result in this
context.

26. Electric power A town produces a portion of its 
electricity using windmills. Suppose that with winds that
average , the windmills generate
kilowatts of power. The town estimates that
is the number of people that can be supported by a power
level of kilowatts.

(a) Write a formula for the function . What
does measure?

(b) Compute and interpret your result in this context.

27. Use the given graphs of and to evaluate each 
expression.

(a) (b)

(c) (d)

C�m�
m

f �t�
t

t�t� � C� f �t��

f � p�
p

t�t�
t

t� f � p��f �t�t��

p�t�
t

f �n�
n

f �p�t��p� f �n��

d
P�d� � 14.7 � 0.433d PSI

f �m� � 0.5m � 3smm

A�m� � P� f �m��
A

A�25�

p�s� � s1400ss
f �x� � 0.34x

x

r�s� � f �p�s��
r

r�18�

tf

t� f �0��f �t�2��
f � f �4��f �t�0��

0 2

2

fg

mi�h

28. Use the table to evaluate each expression.

(a) (b)

(c) (d)

29–32 ■ Find functions and so that .

29. 30.

31. 32.

33. Suppose the graph of is given. Write equations (in terms
of ) for the graphs that are obtained from the graph of
as follows.

(a) Shift 4 units upward.

(b) Shift 4 units downward.

(c) Shift 4 units to the right.

(d) Shift 4 units to the left.

(e) Reflect about the -axis.

(f) Reflect about the -axis.

(g) Stretch vertically by a factor of 3.

(h) Shrink vertically by a factor of 3.

34. Explain how the following graphs are obtained from the
graph of .

(a) (b)

(c) (d)

(e) (f)

35. The graph of is given. Match each equation with
its graph and give reasons for your choices.

(a) (b)

(c) (d)

(e)

f �t�1�� t� f �1��
t� f �3�� f �t�6��

f t h�x� � f �t�x��

h�x� � �x 2 � 1�10 h�x� � sx 3 � 1

h�x� � s2x 2 � 5 h�x� �
1

x 2 � 5

f
f f

x

y

y � f �x�
y � 5 f �x� y � f �x � 5�
y � �f �x� y � �5 f �x�
y � f �5x� y � 5 f �x� � 3

y � f �x�

y � f �x � 4� y � f �x� � 3

y � 1
3 f �x� y � �f �x � 4�

y � 2 f �x � 6�

!@

$

%

#f

y

3

_3

6

0 x3_3_6 6

1 2 3 4 5 6

3 1 4 2 2 5

6 3 2 1 2 3t�x�

f �x�

x
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SECTION 1.2 ■ Combining and Transforming Functions 27

36. The graph of is given. Draw the graph of each of the
following functions.

(a) (b)

(c) (d)

37. The graph of is given. Use it to graph the following 
functions.

(a) (b)

(c) (d)

38–42 ■ The graph of is shown in Figure 8(a). Use
transformations to graph each of the following functions.

38.

39. 40.

41. 42.

43–46 ■ The graph of is shown in Figure 9. Use
transformations to graph each of the following functions.

43. 44.

45.

46.

47. Given the graph of as shown in Figure 8(a), use
transformations to create a function whose graph is as
shown.

(a) (b)

f

y � f �x � 4� y � f �x� � 4

y � 2 f �x� y � �
1
2 f �x� � 3

x

y

1

1

f

y � f �2x� y � f ( 1
2 x)

y � f ��x� y � �f ��x�

10

1

x

y

y � sx

y � sx � 3

y � sx � 3 y � �
1
2 sx

y � �sx � 1 y � s�x � 2

y � x 2

y � �x 2 � 2 y � �x � 1�2 � 4

f �x� � 1
4 x 2 � 3

t�x� � ��x � 5�2 � 3

y � sx

y

x

4

0

y

x

4

_1
0

48. Given the graph of as shown in Figure 9, use 
transformations to create a function whose graph is as
shown.

(a) (b)

49. Water depth The depth, in feet, of water in a reservoir
is given by , where is the time in months beginning 
January 1, 2000.

(a) If a second reservoir’s water depth is given by
, how do the water levels of the two

reservoirs compare?

(b) What if the second reservoir’s depth is 
?

(c) What if the second reservoir’s depth is 
?

(d) What if the second reservoir’s depth is 
?

50. Temperature The temperature, in degrees Fahrenheit, at
Bob Hope Airport in California days after the start of the
year is given by .

(a) If the temperature days after the start of the year at
Los Angeles International Airport (LAX) is given by

, how does the temperature at LAX
compare to the temperature at Bob Hope Airport?

(b) What if the temperature at LAX is ?

51. Music sales The number of songs sold, in thousands,
during the th month of last year by an Internet music
service is .

(a) If a rival service sold songs, how does
the number of songs sold by the rival service compare
to that of the first service?

(b) What if the rival service sold 
songs?

(c) What if the rival service sold 
songs?

52. Bear population An ecologist has been observing the
populations of brown bears and black bears in a region of
Alaska. Let represent the estimated number of brown
bears, and the estimated number of black bears,
years after January 1, 1990. 

(a) If there are always 500 more black bears than brown
bears, write a formula [in terms of ] for .

(b) If there are always 15% fewer black bears than brown
bears, write a formula [in terms of ] for .

y � x 2

y

x

1

30

x

y

1

_2

0

f �t� t

t�t� � f �t� � 15

t�t� � f �t � 2�

t�t� � f �t � 2�

t�t� � 0.8 f �t�

x
T�x�

x

h�x� � T�x� � 8

h�x� � 0.9T�x�

n
A�n�

B�n� � 1.3A�n�

B�n� � A�n� � 23

B�n� � A�n � 1� � 5

R�t�
L�t� t

R�t� L�t�

L�t�R�t�
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28 CHAPTER 1 ■ Functions and Models

(c) If the number of black bears at any point in time
matches the number of brown bears two years prior,
write a formula [in terms of ] for .

53. Motion A ship is moving at a speed of parallel
to a straight shoreline. The ship is 6 km from shore and it
passes a lighthouse at noon.

(a) Express the distance between the lighthouse and the
ship as a function of , the distance the ship has trav-
eled since noon; that is, find so that .

(b) Express as a function of , the time elapsed since
noon; that is, find so that .

(c) Find . What does this function represent?

54. Motion An airplane is flying at a speed of at
an altitude of one mile and passes directly over a radar
station at time .

(a) Express the horizontal distance (in miles) that the
plane has flown as a function of .

(b) Express the distance between the plane and the radar 
station as a function of .

(c) Use composition to express as a function of .

55. Water ripple A stone is dropped into a lake, creating a
circular ripple that travels outward at a speed of .

R�t� L�t�

30 km�h

s
d

s � f �d�f

td
d � t�t�t

f �t�t��

350 mi�h

t � 0

d
t

s
d

ts

60 cm�s

(a) Express the radius of this circle as a function of the 
time in seconds.

(b) If is the area of this circle as a function of the
radius, find and interpret it.

56. Electric current The Heaviside function is defined
by

It is used in the study of electric circuits to represent the
sudden surge of electric current, or voltage, when a switch
is instantaneously turned on.

(a) Sketch the graph of the Heaviside function.

(b) Sketch the graph of the voltage in a circuit if the 
switch is turned on at time and 120 volts are
applied instantaneously to the circuit. Write a formula
for in terms of .

(c) Sketch the graph of the voltage in a circuit if the
switch is turned on at time seconds and
240 volts are applied instantaneously to the circuit.
Write a formula for in terms of . (Note that
starting at corre sponds to a translation.)

H�t� � �0

1

if t � 0

if t � 0

V�t�
t � 0

H�t�V�t�
V�t�

t � 5

H�t�V�t�
t � 5

H

A
A�r�t��

r
t

57–58 ■ Find a formula for .

57. ,  ,  

58. ,  ,  

59. The graph of a function 
is given.

Write an equation (in terms 
of ) for the function whose
graph is as shown.

p�x� � f �t�h�x���

f �x� � sx � 1 t�x� � x 2 � 2 h�x� � x � 3

f �x� � 2x � 1 t�x� � x 2 h�x� � 1 � x

y � f �x�

f

x0

y

1

y=f(x)

1

x0

y

1

1

60–61 ■ If is the graph given in Exercise 37, write a
formula (in terms of ) for the function whose graph is 
shown.

60.

61.

f
f

x

y

0 3

1

x

y

0

1

1

■ Challenge Yourself

23827_ch01_ptg01_hr_022-031_23825_ch01_ptg01_hr_022-031  6/21/11  10:30 AM  Page 28

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 1.3 ■ Linear Models and Rates of Change 29

62–63 ■ If is the graph given in Exercise 36, write a
formula (in terms of ) for the function whose graph is shown.

62.

63.

64. Use the given graphs of and to estimate the value of
for . Use these

estimates to sketch a rough graph of .

f
f

x

y

0 1

1

x

y

0 1

1

tf
x � �5, �4, �3, . . . , 5h�x� � f �t�x��

h

0 1

1

f

g

x

y

65–66 ■ The graph of is given. Use transfor-
mations to create a function whose graph is as shown.

65. 66.

67. Let and be linear functions with equations
and . If ,

is also a linear function? If so, what is the slope of its
graph?

68. If you invest dollars at 4% interest compounded annu-
ally, then the amount of the investment after one year
is . Find formulas for , ,
and . What do these compositions represent?
Find a formula for the composition of copies of .

f t

f �x� � m1x � b1 t�x� � m2 x � b2

x
A�x�

A�x� � 1.04x

n A

h�x� � f �t�x��
h

A�A�x�� A�A�A�x���
A�A�A�A�x����

1.5 y=œ„„„„„„3x-≈

x

y

30

_4
_1

_2.5

x

y

_1 0

5 x

y

20

3

y � s3x � x 2 

Linear Models and Rates of Change
Of the many different types of functions that can be used to model relationships
observed in the real world, one of the most common is the linear function. When
we say that one quantity is a linear function of another, we mean that the graph of
the function is a line.

■ Review of Lines
Recall that the slope of a line is a measure of its steepness. We measure the slope
by computing the “rise over run” between any two points on the line:

As we can see in Figure 1, the rise is simply the difference or change in -values
between the two points and the run is the difference in -values. Thus we can think
of the slope as the “change in over the change in .”

1.3

slope �
rise

run

y
x

y xFIGURE 1

(x™, y™)

(x¡, y¡)

Îy=fi-›

Îx=x™-⁄

     

x

y

0

=run

=rise
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30 CHAPTER 1 ■ Functions and Models

(1) ■ Definition The slope of the line that passes through the points
and is

A line has the same slope everywhere, so it makes no difference which two
points we use to compute slope. Figure 2 shows several lines labeled with their
slopes. Lines with positive slope slant upward to the right, whereas lines with neg-
ative slope slant downward to the right. Notice that the steepest lines are the ones
for which the absolute value of the slope is largest, and a horizontal line has slope
0. The slope of a vertical line is not defined. 

Now let’s find an equation of the line that passes through a given point
and has slope . If we compute the slope from to any other point on
the line, we get

which can be written in the form

This equation is satisfied by all points on the line, including , and only by
points on the line. Therefore it is an equation of the given line.

(2) ■ Point-Slope Form of the Equation of a Line An equation of the
line passing through the point and having slope is

Equation 2 becomes even simpler if we use the point at which a (nonvertical)
line intersects the -axis. The -coordinate there is 0 and the -value, called the 
-intercept, is traditionally denoted by . (See Figure 3.) Thus the line passes

through the point and Equation 2 becomes

which simplifies to the following:

(3) ■ Slope-Intercept Form of the Equation of a Line An equation of
the line with slope and -intercept is

■ E X A M P L E  1 A Line through Two Points
Find an equation of the line through the points and and write the
equation in slope-intercept form.

�x1, y1� �x2, y2�

m �
change in y

change in x
�

�y

�x
�

y2 � y1

x2 � x1

m �
y � y1

x � x1

y � y1 � m�x � x1�

�x1, y1�

�x1, y1� m

y � y1 � m�x � x1�

y x y
y b

�0, b�

y � b � m�x � 0�

m y b

y � mx � b

��1, 2� �3, �4�

�x1, y1�
m �x1, y1� �x, y�

The Greek letter (capital delta) is
used to represent an increment or 
an amount of change.

�

FIGURE 2

x0

y

m=1

m=0

m=_1

m=_2

m=_5

m=2

m=5

m=
1

2

m=_
1

2

x0

y

b

y=mx+b

FIGURE 3
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SECTION 1.3 ■ Linear Models and Rates of Change 31

S O L U T I O N

By Definition 1 the slope of the line is

Using Equation 2 with and , we obtain

which can be written as

or   ■

The equation of a nonvertical line can always be written in slope-intercept
form, which reveals the slope and -intercept at a glance.

■ E X A M P L E  2 Graphing a Linear Equation

Sketch the graph of the equation .

S O L U T I O N

The equation is in slope-intercept form, which allows us to identify the graph as a
line with slope and -intercept 5. To sketch the line we start at the point

. The slope is negative, so we move through a “rise” of (actually a
downward movement) and a run of 4 (to the right) to arrive at the point .
The graph is the line through these two points as shown in Figure 4.

■

■ Rate of Change and Linear Functions
We defined the slope of a line as the ratio of the change in , , to the change in 
, . Thus we can interpret the slope as the rate of change of with respect to .

If is a linear function, then its graph is a line and we can think of the slope as the
ratio of the change in output to the change in input. In this context, the slope mea-
sures the rate of change of the function.

m �
�4 � 2

3 � ��1�
� �

3

2

x1 � �1 y1 � 2

y � 2 � �
3
2�x � 1�

y � 2 � �
3
2 x �

3
2 y � �

3
2 x �

1
2

y

y � �
3
4 x � 5

m � �
3
4 y

�0, 5� �3
�4, 2�

0

(4, 2)

4

(0, 5)

x

y

_3

FIGURE 4

y �y
x �x y x

f

rate of change �
change in output

change in input
�

�y

�x
� slope of line

See Appendix B for a more detailed
review of slope and lines, along 
with additional examples and 
exercises.
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32 CHAPTER 1 ■ Functions and Models

For instance, a slope of 4 means that a change in input will cause a change in
output that is four times larger. The slope of a given line is the same at all points,
so a characteristic feature of linear functions is that the rate of change is constant :

Linear functions grow at a constant rate.

A rate of change is always measured by a ratio of units: output units per input unit.

■ E X A M P L E  3  Slope of a Linear Function

A company that produces snowboards has seen its annual sales increase linearly.
In 2005, it sold 31,300 snowboards, and it sold 38,200 snowboards in 2011. Com-
pute the slope of the linear function that gives annual sales as a function of the
year. What does the slope represent in this context?

S O L U T I O N

The slope is

and the units are number of snowboards per year. Thus the number of snowboards
the company produces is increasing at a rate of 1150 per year. ■

Because the graph of a linear function is a line, we can write an equation for a
linear function using the slope-intercept form given by Equation 3:

For instance, consider a linear function with values as given in the table. Observe
that each time increases by 5, increases by 3, so the slope is . We have

, so the point is on the line and 28 is the -intercept. (If the depen-
dent variable is rather than , we would call it the -intercept.) Thus an equation
for is .

If is measuring some quantity, we can think of 28 (when ) as the initial
or starting value for the function. Values change from there at a rate of . The next
two examples illustrate this point.

■ E X A M P L E  4  A Linear Cost Function

The owner of a car-wash business estimates that it costs 
dollars to wash cars in one day.

(a) What is the rate of change? What does it mean in this context?

(b) What is the -intercept? What does it represent here?

S O L U T I O N

(a) The rate of change is 4.5, the coefficient of , and the units are dollars per
car. Thus each additional car washed adds $4.50 to the cost for that day.

(b) The -intercept is 340. This value is the initial output corresponding to 
, so it represents the fixed cost, $340, of operating the car wash for a

day, whether or not any cars are washed. ■

m �
change in output

change in input
�

38,200 � 31,300

2011 � 2005
�

6900

6
� 1150

f �x� � mx � b

x y � f �x� 3
5

f �0� � 28 �0, 28� y
A y A

f f �x� � 3
5 x � 28

f x � 0
3
5

C�x� � 4.5x � 340
x

C

x

C
x � 0

22
25

0 28
5 31

10 34
15 37

f �x�x

�10
�5
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SECTION 1.3 ■ Linear Models and Rates of Change 33

■ E X A M P L E  5  Writing an Equation for a Linear Function

(a) As dry air moves upward, it expands and cools. If the ground temperature is
and the temperature at a height of 1 km is , express the tempera-

ture (in ) as a function of the height (in kilometers), assuming that a
linear model is appropriate.

(b) Draw the graph of the function in part (a). What does the slope represent in
this context?

(c) What is the temperature at a height of 2.5 km?

S O L U T I O N

(a) Because we are assuming that is a linear function of , we can write

We are given two function values, and , so the slope of
the graph is

The initial temperature value is , so the -intercept is and
the linear function is

(b) The graph is sketched in Figure 5. The slope is and it represents
the rate of change of with respect to ; the units are degrees Celsius per
kilometer ( ). The rate of change is negative, so the temperature
decreases by for each rise in elevation of 1 km.

(c) At a height of km, the temperature is

■

We don’t need to know the starting value for a linear function to write an equa-
tion. We can simply use the point-slope formula given in Equation 2.

■ E X A M P L E  6  Writing a Linear Model Using the Point-Slope Form

A pump has been pouring water into a swimming pool. The data in the table show
the water volume of the pool every two hours after the pump was activated.

(a) Explain why a linear model is appropriate.

(b) Write an equation for a linear function to model the data.

(c) Use your model to predict the volume of water in the pool after 17.5 hours.

(d) When will the amount of water in the pool reach 6000 gallons?

S O L U T I O N

(a) The volume of water increases 300 gallons during each two-hour interval.
Thus the rate of change is constant, indicating a linear relationship between
the input and output.

20�C 10�C
T �C h

T h

T � mh � b

T�0� � 20 T�1� � 10

m �
�T

�h
�

T�1� � T�0�
1 � 0

�
10 � 20

1 � 0
� �10

T�0� � 20 T b � 20

T�h� � �10h � 20

m � �10
T h

�C�km
10�C

h � 2.5

T�2.5� � �10�2.5� � 20 � �5�C
FIGURE 5  

T=_10h+20

T

h0

10

20

1 3

Water volume in pool
Hours (gallons)

2 2800
4 3100
6 3400
8 3700

10 4000

23827_ch01_ptg01_hr_032-041_23825_ch01_ptg01_hr_032-041  6/21/11  10:31 AM  Page 33

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



(b) The rate of change is 300 gallons every two hours, or 150 gallons per hour,
so the slope is . If we let be the water volume in gallons hours
after the pump is activated, then , so the point is on the
graph. The point-slope formula gives

Thus the water volume in gallons hours after the pump is turned on is given
by .

(c) The volume of water in the pool after 17.5 hours is

gallons

(d) We solve :

Thus the amount of water in the pool reaches 6000 gallons after hours, or
23 hours 20 minutes. ■

■ Fitting a Model to Data
Although linear functions are often used as models, few functional relationships in
the world around us are perfectly linear. Nevertheless, many observed data are
approximately linear, and a linear function is still an appropriate model to use. The
goal is to write an equation that “fits” the data accurately enough to capture the
basic trend and allow further analysis. But how do we know if an equation fits the
data well enough? The next example illustrates one approach we can take.

■ E X A M P L E  7  Modeling with a Linear Function

Table 1 on page 35 lists the average carbon dioxide level in the atmosphere,
measured in parts per million at Mauna Loa Observatory from 1980 to 2008. Use
the data in Table 1 to find a model for the carbon dioxide level.

S O L U T I O N

We use the data in Table 1 to make the scatter plot in Figure 6, where represents
time, in years, and represents the level, in parts per million (ppm). To
simplify the input values, let correspond to the year 1980.

Notice that the data points appear to lie close to a straight line, so it’s natural
to choose a linear model in this case. But there are many possible lines that
approximate these data points, so which one should we use? One strategy is to use
two of the points from the scatter plot to write an equation. Different pairs of
points will generate different results, so the points should be chosen wisely. You
may wish to first draw a line with a ruler on the scatter plot to help select two
points.

V � 2800 � 150�t � 2� � 150t � 300

V � 150t � 2500

t
V�t� � 150t � 2500

V�17.5� � 150�17.5� � 2500 � 5125

V�t� � 6000

150t � 2500 � 6000

150t � 3500

t �
3500

150
�

70

3

231
3

t
C CO2

tV�t�
�2, 2800�V�2� � 2800

m � 150

t � 0
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From the scatter plot, it appears that a line passing through the points
and will fit the data reasonably well. The slope of this line is

and its equation is

or

(4)

Equation 4 gives one possible linear model for the carbon dioxide level; it is
graphed in Figure 7.

■

■ Regression Lines
A more sophisticated procedure for finding a linear model to fit data is called the
method of least squares. In this method, the vertical distance from each data point
to a line is measured, and the squares of the distances are added together. Of all pos-
sible lines, the line that gives the smallest of such sums, called the regression line,
is chosen as the best-fitting line. This process is tedious to carry out by hand, but

C

FIGURE 6    Scatter plot for the average CO™ level
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FIGURE 7
Linear model through two data points
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T A B L E  1

level
Year (in ppm)

1980 338.7
1982 341.2
1984 344.4
1986 347.2
1988 351.5
1990 354.2
1992 356.3
1994 358.6
1996 362.4
1998 366.5
2000 369.4
2002 373.2
2004 377.5
2006 381.9
2008 385.6

CO2
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36 CHAPTER 1 ■ Functions and Models

computer software and most graphing calculators can determine the equation with
ease. Using a graphing calculator, we enter the data from Table 1 into the data edi-
tor and choose the linear regression command. The calculator gives the slope and 
-intercept of the regression line as approximately

So the regression line model for the level is

(5)

In Figure 8 we graph the regression line as well as the data points. Comparing
with Figure 7, we see that it gives a better fit than our first linear model.

Notice that here the regression line does not include any of the original data
points. In many cases, the best-fitting line is not one that passes through data points.

■ Interpolation and Extrapolation
Now that we have found a linear model for the carbon dioxide levels, we can use it
to estimate the levels for years not listed in Table 1. If we use the model to
compute values for years between the years in the table, we are interpolating. In
contrast, extrapolation is the computation of values outside given data. In general,
extrapolation carries a higher risk of inaccuracy because it is often hard to predict
whether an observed trend will continue.

■ E X A M P L E  8  Using a Linear Model to Interpolate and Extrapolate

Use the linear model given by Equation 5 to estimate the average level for
1987 and to predict the level for the year 2016. According to this model, when
will the average annual level exceed 410 parts per million?

S O L U T I O N

The year 1987 corresponds to . Using Equation 5, we estimate that the aver-
age level in 1987 was

This is an example of interpolation because we have estimated a value between
observed values. (In fact, the Mauna Loa Observatory reported that the average

level in 1987 was 348.93 ppm, so our estimate is quite accurate.)

y

b � 337.41m � 1.6543

CO2

C � 1.6543t � 337.41

C

340
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360

370

380

50 t10 15 20 25 30

FIGURE 8
The regression line

CO2

CO2

CO2

t � 7
CO2

C�7� � �1.6543��7� � 337.41 � 348.99 ppm

CO2

Be careful not to round the values
in a model equation too much. 
You don’t need to include all the
decimal places that a calculator 
or computer gives, but rounding 
values to too few digits can greatly
decrease the accuracy of the model.
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SECTION 1.3 ■ Linear Models and Rates of Change 37

To predict the level for the year 2016, we use :

So we predict that the average level in the year 2016 will be 396.96 ppm.
This is an example of extrapolation because we have predicted a value outside the
observed years 1980–2008. Consequently, we are far less certain about the accu-
racy of our prediction.

To determine when our model predicts a level of 410 ppm, we solve
:

The solution corresponds to a value between the years 2023 and 2024, and since
the levels are annual averages, only integer inputs give meaningful function
values. Comparing and , we see that the
level will first exceed an annual average of 410 ppm in 2024. Note that this pre-
diction is somewhat risky because it involves a time quite a few years beyond the
observed values, and no one can say whether the same patterns will continue. ■

In the preceding example, we used a continuous function to model discrete
data. We will often find this to be a useful technique. However, we must use 
caution in interpreting results found using the continuous model, as the example 
illustrates.

CO2

C�t� � 410
1.6543t � 337.41 � 410

1.6543t � 72.59

t �
72.59

1.6543
� 43.88

CO2

C�43� � 408.54 C�44� � 410.20 CO2

C�36� � �1.6543��36� � 337.41 � 396.96 ppm

CO2

1–4 ■ Find the slope of the line through the given points.

1. ,  

2. ,  

3. ,  

4. ,  

5–14 ■ Find an equation of the line that satisfies the given
conditions. Express the equation in slope-intercept form.

5. , -intercept 

6. , -intercept 4

7. Through , slope 6

8. Through , slope 

9. Through and 

10. Through and 

11. Through and 

12. Through and 

13. -intercept 1, -intercept 

�5, 10��3, 7�

�4, �6��1, 8�

�26, 2240��45, 1860�

�210, 8150��185, 5600�

�2ySlope 3

ySlope 25

�2, �3�

�
7
2��3, �5�

�1, 6��2, 1�

�4, 3���1, �2�

�13, �312��4, 84�

�16, 300��6, 70�

�3yx

14. -intercept , -intercept 6

15. Sketch a line through the point with slope .

16. Sketch a line with slope and -intercept .

17–20 ■ Find the slope and -intercept of the line. Then draw
its graph.

17. 18.

19. 20.

21–24 ■ Find the slope and intercepts of the linear function.
Then sketch a graph.

21. 22.

23. 24.

25. Write an equation for a linear function where
and .

26. Write an equation for a linear function where
and .

y

3x � 8y � �102x � 5y � 15

8y � 3x � 48�5x � 6y � 42

t�t� � �0.5t � 5f �x� � �2x � 14

P�v� � 3v � 1A�t� � 0.2t � 4

h
h�11� � 553h�7� � 329

w
w�74� � 819.6w�42� � 230.8

y�8x

�
1
5��2, 6�

�3y4
7

■ Exercises 1.3
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38 CHAPTER 1 ■ Functions and Models

27. Television ratings The weekly ratings, in millions of
viewers, of a recent television program are given by ,
where is the number of weeks since the show pre-
miered. If is a linear function where and

, compute the slope of and explain what it
represents in this context.

28. Consumer demand A movie studio is releasing a new
DVD, and the studio estimates that if the DVD is priced at
$19.99, it will sell 6.68 million copies, whereas if it is
priced at $15.99, it will sell 11.27 million copies. If is 
a linear function that gives the number of copies sold (in
millions) at a given price, what is the slope of ? What
does it represent in this context?

29. Depreciation A small company purchased a new copy
machine for $16,500 and the company’s accountant plans
to depreciate (for tax purposes) the machine to a value of
$0 over five years. If is the value of the machine after 

years, and is a linear function, what is the slope of ?
What does the slope represent in this context?

30. Matric suction Matric suction is the pressure that
causes water to flow from wetter soil to dryer soil and
often decreases linearly with depth. A researcher has 
taken samples at a location at various depths. Let be
the matric suction, measured in kilopascals (kPa), at 
a depth of cm. Assuming that is a linear function, if

and , what is the slope of ? What
does the slope represent in this context?

31. Taxes Suppose the taxes a company pays are approxi-
mately thousand dollars, where is
the company’s annual profit in thousands of dollars. What
is the rate of change, and what does it measure in this
context?

32. Earth’s surface temperature Some scientists believe
that the average surface temperature of the earth has been
rising steadily. They have modeled the temperature by the
linear function , where is temperature
in and represents years since 1900.

(a) What are the slope and -intercept? What do they 
represent in this context?

(b) Use the equation to predict the average global surface
temperature in 2100.

33. Drug dosage If the recommended adult dosage for a
drug is , in mg, then to determine the appropriate dosage

for a child of age , pharmacists use the equation
. Suppose the dosage for an adult is

200 mg.

(a) Find the slope of the graph of (as a function of ).
What does it represent?

(b) What is the dosage for a newborn?

34. Consumer demand The manager of a weekend flea
market knows from past experience that if he charges 

dollars for a rental space at the flea market, then the

L�w�
w

L�8� � 5.32L
LL�12� � 8.36

f

f

t
V�t�

VV

t�d�

td
tt�104� � 43t�35� � 78

pT�p� � 0.26p � 15.4

TT � 0.02t � 8.50
t�C

T

D
ac

c � 0.0417D�a � 1�

ac

x

number of spaces he can rent is given by the equation
.

(a) Sketch a graph of this linear function. (Remember that
the rental charge per space and the number of spaces
rented can’t be negative quantities.)

(b) What do the slope, the -intercept, and the -intercept
of the graph represent?

35. Temperature scales The relationship between the
Fahrenheit ( ) and Celsius ( ) temperature scales is given
by the linear function .

(a) Sketch a graph of this function.

(b) What is the slope of the graph and what does it repre-
sent? What is the -intercept and what does it
represent?

36. Driving distance Jason leaves Detroit at 2:00 PM and
drives at a constant speed west along I-96. He passes Ann
Arbor, 40 mi from Detroit, at 2:50 PM.

(a) Express the distance traveled in terms of the time
elapsed.

(b) Draw the graph of the equation in part (a).

(c) What is the slope of this line? What does it represent?

37. Cricket chirping rate Biologists have noticed that the
chirping rate of crickets of a certain species is related to
temperature, and the relationship appears to be very nearly
linear. A cricket produces 113 chirps per minute at
and 173 chirps per minute at .

(a) Find a linear equation that models the temperature as
a function of the number of chirps per minute .

(b) What is the slope of the graph? What does it
represent?

(c) If the crickets are chirping at 150 chirps per minute,
estimate the temperature.

38. Manufacturing cost The manager of a furniture factory
finds that it costs $2200 to manufacture 100 chairs in one
day and $4800 to produce 300 chairs in one day.

(a) Express the cost as a function of the number of chairs
produced, assuming that it is linear. Then sketch the
graph.

(b) What is the slope of the graph and what does it 
represent?

(c) What is the -intercept of the graph and what does it
represent?

39. Ocean water pressure At the surface of the ocean, the
water pressure is the same as the air pressure above the
water, . Below the surface, the water pressure
increases by for every 10 ft of descent.

(a) Express the water pressure as a function of the depth
below the ocean surface.

(b) At what depth is the pressure ?

40. Car expense The monthly cost of driving a car depends
on the number of miles driven. Lynn found that in May it 

y
y � 200 � 4x

xy

CF
F � 9

5C � 32

F

70�F
80�F

T
N

y

15 lb�in2

4.34 lb�in2

100 lb�in2
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SECTION 1.3 ■ Linear Models and Rates of Change 39

cost her $380 to drive 480 mi and in June it cost her $460
to drive 800 mi.

(a) Express the monthly cost as a function of the
distance driven , assuming that a linear relationship
gives a suitable model.

(b) Use part (a) to predict the cost of driving 1500 miles
per month.

(c) Draw the graph of the linear function. What does the
slope represent?

(d) What does the -intercept represent?

(e) Why does a linear function give a suitable model in
this situation?

41. Ulcer rates The table shows (lifetime) peptic ulcer 
rates (per 100 population) for various family incomes as
reported by the National Health Interview Survey.

(a) Make a scatter plot of these data and decide whether a 
linear model is appropriate.

(b) Find and graph a linear model using the third and last
data points.

(c) According to the model, how likely is someone with
an income of $90,000 to suffer from peptic ulcers? Is
this an example of interpolation, or extrapolation?

(d) Do you think it would be reasonable to apply the
model to someone with an income of $200,000?

42. US public debt The table gives the amount of debt 
held by the public in the United States (at the end of the
year) as estimated by the Congressional Budget Office 
of the US federal government.

C
d

C

(a) Make a scatter plot of these data and decide whether a
linear model is appropriate.

(b) Find and graph a linear model using the second and
sixth data points.

(c) According to the model, when will the public debt
reach $5.1 trillion? Is this an example of interpolation,
or extrapolation?

(d) Use the model to predict the projected public debt in
2014.

43. Vehicle value In general, a used car is worth more if it
has low mileage. The table shows how the value of a par-
ticular vehicle is affected by different mileage figures.

(a) Make a scatter plot of these data and use two of the
data points to write a linear model for the data.

(b) Use the model to estimate the value of the same car if
it has been driven only 12,000 miles.

(c) For how many miles driven does the model predict a
value of $0? Is this realistic?

44. Hospital visits The Center for Disease Control com-
piles the average annual hospital emergency room visits
due to falls for children of various ages. Annual averages
during recent years are listed in the table.

(a) Make a scatter plot of these data. Is a linear model
appropriate?

(b) Use two of the data points to write a linear model for
the data.

(c) Use the model to estimate the average number of
emergency room visits per 10,000 population for 
18-year-olds. How does your estimated value compare
with the published value of 182.4?

Ulcer rate
Income (per 100 population)

$4,000 14.1
$6,000 13.0
$8,000 13.4

$12,000 12.5
$16,000 12.0
$20,000 12.4
$30,000 10.5
$45,000 9.4
$60,000 8.2

Public debt
Year (billions of dollars)

2004 4296
2005 4665
2006 4971
2007 5246
2008 5494
2009 5716
2010 5919

Mileage Value

20,000 $14,245
30,000 $13,520
40,000 $12,520
50,000 $11,645
60,000 $10,970

Number of visits
Age per 10,000 population

9 295.4
11 276.1
13 268.1
15 215.8
17 186.0
19 176.5
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40 CHAPTER 1 ■ Functions and Models

; 45. Ulcer rates Exercise 41 lists data for peptic ulcer
rates for various family incomes.

(a) Find the least squares regression line for these data.

(b) Use the linear model in part (a) to estimate the ulcer
rate for an income of $25,000.

(c) According to the model, how likely is someone
with an income of $80,000 to suffer from peptic
ulcers?

; 46. Cricket chirping rates Biologists have observed
that the chirping rate of crickets of a certain species
appears to be related to temperature. The table shows
the chirping rates for various temperatures.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Use the linear model in part (b) to estimate the
chirping rate at .

; 47. Olympics The table gives the winning heights for the
men’s Olympic pole vault competitions up to the year
2004.

(a) Make a scatter plot and decide whether a linear
model is appropriate.

(b) Find and graph the regression line.

(c) Use the linear model to predict the height of the
winning pole vault at the 2008 Olympics and com-
pare with the actual winning height of 5.96 meters.

100�F

(d) Is it reasonable to use the model to predict the 
winning height at the 2100 Olympics?

; 48. US public debt The table gives the projected
amount of debt held by the public in the United States
as estimated by the Congressional Budget Office.

(a) Make a scatter plot of these data and decide
whether a linear model is appropriate.

(b) Find and graph the least squares regression line.

(c) Use the regression line model to predict the
projected public debt in 2020.

(d) Exercise 42 lists similar data for prior years, and 
in part (d) the public debt is estimated for 2014.
How does your predicted value compare to the
value given here? What can you conclude about
extrapolation?

49. A family of functions is a collection of functions whose
equations are related.

(a) What do all members of the family of linear func-
tions have in common? Sketch sev-
eral members of the family.

(b) What do all members of the family of linear func-
tions have in common? Sketch sev-
eral members of the family.

(c) Which function belongs to both families?

50. What do all members of the family of linear functions
have in common? Sketch several

members of the family.

51. Two linear functions are graphed below. Which func-
tion has the greater rate of change?

f �x� � 3x � c

f �x� � ax � 3

f �x� � c � �x � 3�

y

x

20

40

1 2 3 4 5

y=g(x)

0

y=f(x)

y

x

5

10

1 2 3 4 50

Temperature Chirping rate Temperature Chirping rate
(°F) (chirps�min) (°F)  (chirps�min)

50 20 75 140
55 46 80 173
60 79 85 198
65 91 90 211
70 113

Year Height (m) Year Height (m)

1896 3.30 1960 4.70
1900 3.30 1964 5.10
1904 3.50 1968 5.40
1908 3.71 1972 5.64
1912 3.95 1976 5.64
1920 4.09 1980 5.78
1924 3.95 1984 5.75
1928 4.20 1988 5.90
1932 4.31 1992 5.87
1936 4.35 1996 5.92
1948 4.30 2000 5.90
1952 4.55 2004 5.95
1956 4.56

Public debt
Year (billions of dollars)

2011 6012
2012 5955
2013 5884
2014 5784
2015 5658

; Graphing calculator or computer required
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SECTION 1.4 ■ Polynomial Models and Power Functions 41

52. Two linear functions and
are graphed below.

(a) Is , or is ?

(b) Is , or is ?

53. Health spending The table shows the US national
health expenditures, as a percentage of gross domestic
product (GDP), for various years.

t�x� � cx � df �x� � ax � b

y=f(x)

y=g(x)

y

x

a � ca � c

b � db � d
Write a piecewise function that models these data.

54. US public debt Use the data given in Exercises 42 and
48 to write a piecewise function that models the estimated
public debt for the years 2004–2015.

National health expenditure
Year (percent of GDP)

1995 13.4
1998 13.2
1999 13.2
2000 13.3
2001 14.1
2002 14.9
2003 15.3

Polynomial Models and Power Functions
While linear functions may be the most basic and commonly occurring models,
there are many other kinds of functions that are often used in modeling. In this sec-
tion we look at polynomials, power functions, and rational functions. We will see
that there is some overlap between the categories; some functions qualify as all
three types.

A function is called a polynomial if it can be written as

where is a nonnegative integer and the numbers are constants
called the coefficients of the polynomial. Examples of polynomials are

The domain of any polynomial is . The largest exponent that appears
on the input variable is called the degree of the polynomial. The degrees of the
polynomials above are 8, 3, and 6, respectively. The linear functions 
studied in the previous section are polynomials of degree 1. (Recall that .)

Polynomials are commonly used to model various quantities that occur in the
natural and social sciences. For instance, we will soon see why economists often
use a polynomial to represent the cost of producing units of a commodity.

1.4

P

P�x� � anxn � an�1x n�1 � � � � � a2 x 2 � a1x � a0

n a0, a1, a2, . . . , an

f �x� � x 5 � 3x 8 � 4x 2

t�t� � 1.737t 3 � 2.49t 2 � 8.51t � 4.12

P�v� � 2v 6 � v 4 �
2
5v 3 � s2

� � ��	, 	�

f �x� � mx � b
x1 � x

P�x� x
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54 CHAPTER 1 ■ Functions and Models

Exponential Models
You may have heard a newscaster say that a company or industry was “growing
exponentially.” Populations and financial markets can also grow exponentially.
What does this mean? Suppose a bacteria population (cultured in ideal conditions)
is doubling every hour. If we begin with 1000 bacteria, then after one hour we have

bacteria, after two hours we have bacteria,
after three hours we have 8000 bacteria, and so on. The population is not growing
in a linear fashion: If we had a constant rate of change, the population would con-
sistently increase by 1000 every hour. Instead, we have a constant percentage rate
of growth; the population increases by 100% every hour.

To model the growth of the bacteria population, let be the number of bac-
teria after hours. Then

It seems from this pattern that, in general,

Our result is a constant multiple of the exponential function . It is called an
exponential function because the variable, , is the exponent. It should not be con-
fused with the power function .

■ Introduction to Exponential Functions
In general, an exponential function is a function of the form

where is a positive constant called the base. Every exponential function has
domain , although this may not be immediately apparent. For
instance, if we input a positive integer such as 8, then we simply have

8 factors

If we input a negative integer such as , then recall that

We can input 0 as well: . Reciprocal inputs such as become roots:

In fact, any rational number input can be expressed as a fraction (where and 

1.5

1000 � 2 � 2000 2000 � 2 � 4000

p�t�
t

p�0� � 1000

p�1� � 2 � p�0� � 2 � 1000

p�2� � 2 � p�1� � 2 � �2 � 1000� � 22 � 1000

p�3� � 2 � p�2� � 2 � �22 � 1000� � 23 � 1000

p�t� � 2 t � 1000 � 1000�2t�

y � 2 t

t
y � t 2

f �x� � ax

a
� � ���, ��

f �8� � a8 � a � a � � � � � a

�3

f ��3� � a�3 �
1

a 3

f �0� � a0 � 1 1�3

f (1
3) � a1�3 � s

3 a

x p�q p
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SECTION 1.5 ■ Exponential Models 55

are integers), in which case

What if is an irrational number, like ? We can define by a limiting process
using rational approximations to . Because can be approximated by 1.4,
1.41, 1.414, 1.4142, with increasing accuracy, so is approximated by ,

, , , . For our purposes, it is enough to know that a calculator can
generate an (approximate) value. Thus is defined for any real number input.

The range of all exponential functions (except ) is . (An exponen-
tial function can never output 0 or a negative number.)

The graph of is shown in Figure 1 and the graphs of members of the
family of functions are shown in Figure 2 for various values of the base .
Notice that all of these graphs pass through the same intercept point because

for all positive values of . Notice also that as the base gets larger, the
exponential function grows more rapidly (for ).

You can see from Figure 2 that there are basically two kinds of exponential
functions (assuming ). If , the exponential function
decreases; if , it increases. These cases are illustrated in Figure 3. Notice that,
since , the graph of is just the reflection of the
graph of about the -axis.

f �x� � f �p�q� � a p�q � s
q ap � (sq a ) p

x s2 as2

s2 s2
. . . as2 a1.4

a1.41 a1.414 a1.4142 . . .
ax

1x � 1 �0, ��

�0, 1�
a0 � 1 a a

x � 0

FIGURE 2  
0

1®

1.5®
2®4®10®”   ’

®1

4
”   ’

®1

2

x

y

1

y � ax a � 1 0 � a � 1
a � 1

�1�a�x � 1�ax � a�x y � �1�a�x

y � ax y

FIGURE 3

(0, 1)

(a) y=a®,  0<a<1 (b) y=a®,  a>1

(0, 1)

x

y

x

y

00

ay � ax
y � 2 x

q

x

y

1

1

FIGURE 1
y=2®

If , then approaches 
as becomes large. If , then 
approaches as decreases through
negative values. In both cases the 
-axis is a horizontal asymptote.

These matters are discussed in 
Sec tion 4.4.

0
a xa � 1x

0a x0 � a � 1

x

x
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56 CHAPTER 1 ■ Functions and Models

■ E X A M P L E  1  Sketching Graphs of Exponential Functions

Sketch the graphs of the functions (a) and (b) . What
are the domain and range?

S O L U T I O N

(a) The graph of (shown in Figure 4) is the graph of (see Figure 1)
stretched vertically by a factor of 3. The graph intersects the -axis at
but the domain, range, and horizontal asymptote remain unchanged.

(b) The graph of is shown in Figure 2. We shift the graph upward 3
units to obtain the graph of . (See Figure 5.) The -intercept is shifted to 4
and the horizontal asymptote is the line . The domain is and the
range is . ■

■ E X A M P L E  2  Comparing Exponential and Power Functions

Use a graphing calculator (or computer) to compare the exponential function
and the power function . Which function grows more quickly

when is large?

S O L U T I O N

Figure 6 shows both functions graphed in the viewing rectangle by .
We see that the graphs intersect three times, but for the graph of
stays above the graph of . Figure 7 gives a more global view and shows
that, for large values of , the exponential function grows far more rapidly
than the power function .

■

t�x� � (1
2)

x
� 3f �x� � 3 � 2 x

y � 2 xf
�0, 3�

FIGURE 4  

y

x

(0, 3)

10

FIGURE 5

3

(0, 4)

1

y

x0

y � �1�2�x

t

�y � 3
�3, ��

t�x� � x 2f �x� � 2 x

x

�0, 40���2, 6�
f �x� � 2 xx � 4

t�x� � x 2

y � 2 xx
y � x 2

250

0 8

y=2®

y=≈

40

0
_2 6

y=2®
y=≈

FIGURE 6 FIGURE 7

y

y

For a review of reflecting and shift-
ing graphs, see Section 1.2.

Example 2 shows that 
increases more quickly than .
To demonstrate just how quickly

increases, let’s perform
the following thought experiment.
Suppose we start with a piece of
paper a thousandth of an inch thick
and we fold it in half 50 times.
Each time we fold the paper in half,
the thickness of the paper doubles,
so the thickness of the resulting
paper would be inches.
How thick do you think that is? It
works out to be more than 17 mil-
lion miles!

y � 2 x

y � x 2

f �x� � 2 x

2 50�1000
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SECTION 1.5 ■ Exponential Models 57

■ Properties of Exponential Functions
One reason for the importance of the exponential function lies in the following
properties. If and are integers or rational numbers, then these laws are well
known from elementary algebra. It can be proved that they remain true for all real
numbers and .

■ Laws of Exponents If and are positive numbers and and are any
real numbers, then

1. 2. 3. 4.

■ E X A M P L E  3  Using Properties of Exponential Functions

Show that each of the following is true.

(a)

(b)

(c)

(d)

S O L U T I O N

(a)

(b)

(c)

(d) ■

■ Applications of Exponential Functions
The exponential function occurs very frequently in mathematical models of nature
and society. Any situation where a quantity is growing or shrinking at a constant
percentage rate exhibits exponential growth or exponential decay and can be mod-
eled with a transformed exponential function. Here we give an example where such
a model is appropriate to describe population growth. In Section 3.6 we will study
many additional applications.

Many graphing calculators (and computer software) have exponential regres-
sion capabilities that can fit an exponential model to data. They typically use a least
squares technique similar to the linear regression method we used in Section 1.3.
The following example uses this technology to model the world’s human popula-
tion over the last century.

yx

yx

yxba

�ab�x � axbx�ax �y � axyax

ay � ax�ya x � ay � ax�y

5 � 4 x�2 � 5 � 2 x

8 � �1.6�2x � 8 � �2.56�x

34�2t � 81 � 9 t

10

5 x�3 � 10 � �5�1�3�x

8 � �1.6�2x � 8 � ��1.6�2�x � 8 � �2.56�x

5 � 4 x�2 � 5 � �41�2�x � 5 � (s4 )x
� 5 � 2 x

10

5 x�3 � 10 � �5�x�3� � 10 � �5�1�3�x

34�2t � 34 � 3 2t � 81 � �32�t � 81 � 9 t

For more review and practice 
using the Laws of Exponents, 
see Appendix A.
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58 CHAPTER 1 ■ Functions and Models

■ E X A M P L E  4  Modeling Population with Exponential Regression

Table 1 shows data for the population of the world in the 20th century and Fig-
ure 8 shows the corresponding scatter plot. For simplicity, we have used to
represent 1900.

The pattern of the data points in Figure 8 suggests exponential growth, so we
use a graphing calculator to obtain the exponential model

Figure 9 shows the graph of this exponential function together with the original data
points. We see that the exponential curve fits the data reasonably well. The period
of relatively slow population growth is explained by the two world wars and the
Great Depression of the 1930s.

■

■ The Number 
Of all possible bases for an exponential function, there is one that is most conven-
ient for the purposes of calculus. The choice of a base is influenced by the way
the graph of crosses the -axis. Figures 10 and 11 show the tangent lines to
the graphs of and at the point . (Tangent lines will be defined
precisely in Section 2.3. For present purposes, you can think of the tangent line to

t � 0

FIGURE 8 Scatter plot for world population growth

6000

4000

2000

P

t20 40 60 80 100 1200

P�t� � �1436.53� � �1.01395�t

FIGURE 9  
Exponential model for

population growth 20 40 60 80 100 120

P

t0

6000

4000

2000

e

a
y � a x y

y � 2 x y � 3x �0, 1�

Population
Year (millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080
2010 6870

T A B L E  1
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SECTION 1.5 ■ Exponential Models 59

an exponential graph at a point as the line that touches the graph only at that point.
It has the same direction as the exponential graph at that point.) If we measure the
slopes of these tangent lines at , we find that for and
for .

It turns out, as we will see in Chapter 3, that some of the formulas of calculus
will be greatly simplified if we choose the base so that the slope of the tangent
line to at is exactly 1. (See Figure 12.) In fact, there is such a number;
it is an irrational number (it has an infinite nonrepeating decimal representation) and
is denoted by the letter . (This notation was chosen by the Swiss mathematician
Leonhard Euler in 1727, probably because it is the first letter of the word exponen-
tial.) This value also arises naturally in the analysis of compounded interest on a
bank account, as one example. In view of Figures 10 and 11, it comes as no surprise
that the number lies between 2 and 3 and the graph of lies between the
graphs of and . (See Figure 13.) We call the natural exponen-
tial function. In Chapter 3 we will see that the value of , correct to five decimal
places, is

■ E X A M P L E  5  
Graphing a Transformed Natural Exponential Function

Graph the function and state the domain and range.

S O L U T I O N

We start with the graph of from Figures 12 and 14(a) and reflect about the
-axis to get the graph of in Figure 14(b). (Notice that the graph crosses 

m � 1.1y � 2 xm � 0.7�0, 1�
y � 3x

FIGURE 11

0

1

mÅ1.1

FIGURE 10

0

y=2®

1

mÅ0.7

x

y
y=3®

x

y

a
�0, 1�y � ax

e

y � exe
y � e xy � 3xy � 2 x

e

e � 2.71828

FIGURE 13
0

1

y=2®

y=e®

y=3®
y

x

y � 1
2e�x � 1

y � e x

y � e�xy

FIGURE 12
The natural exponential function
crosses the y-axis with a slope of 1.

0

y=´

1

m=1

x

y

Module 1.5 enables you to
graph exponential functions with
various bases and their tangent lines
in order to estimate more closely
the value of for which the tangent
has slope 1.

TEC

a
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60 CHAPTER 1 ■ Functions and Models

the -axis with a slope of ). Then we compress the graph vertically by a factor
of 2 to obtain the graph of in Figure 14(c). Finally, we shift the graph
downward one unit to get the desired graph in Figure 14(d). The -intercept is
and the horizontal asymptote has shifted to . The domain is and the
range is .

■

How far to the right do you think we would have to go for the height of the
graph of to exceed a million? The next example demonstrates the rapid
growth of this function by providing an answer that might surprise you.

■ E X A M P L E  6  
The Rapid Growth of the Natural Exponential Function

Use a graphing device to find the values of for which .

S O L U T I O N

In Figure 15 we graph both the function and the horizontal line
. We see that these curves intersect when . Thus,

when (approximately). Most people would not guess that the values of
the exponential function have already surpassed a million when is only 14! ■

y �1
y � 1

2e�x

�
1
2

y � �1 �

��1, ��

FIGURE 14

x0

y

(a) y=´

1

1

2
(c) y=   e–®

0

1

x

y

0

(b) y=e–®

1

x

y

1

2
(d) y=   e– ®-1

y=_1

0

1

y

x

y � ex

x e x � 1,000,000

y � ex

y � 1,000,000 x � 13.8 ex � 10 6

x � 13.8
x

y

FIGURE 15

1.5x10^

0 15

y=´

y=10^

1. (a) Write an equation that defines the exponential
function with base .

(b) What is the domain of this function?

(c) If , what is the range of this function?

(d) Sketch the general shape of the graph of the exponen-
tial function for each of the following cases.

(i) (ii)

2. (a) How is the number defined?

(b) What is an approximate value for ?

(c) What is the natural exponential function?

a � 0

a � 1

a � 1 0 � a � 1

e

e

; 3–6 ■ Graph the given functions on a common screen. How
are these graphs related?

3. ,  ,  ,  

4. ,  ,  ,  

5. ,  ,  ,  

6. ,  ,  ,  

7–12 ■ Make a rough sketch of the graph of the function. Do
not use a calculator. Just use the graphs given in Figures 2 and 

y � 2 x y � e x y � 5 x y � 20 x

y � 8 �xy � 8 xy � e �xy � e x

y � ( 1
10)

x
y � (1

3)
x

y � 10 xy � 3 x

y � 0.1xy � 0.3 xy � 0.6 xy � 0.9 x

■ Exercises 1.5
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SECTION 1.5 ■ Exponential Models 61

13 and, if necessary, the transformations of Section 1.2. Indi-
cate the location of the horizontal asymptote.

7. 8.

9. 10.

11. 12.

13. Starting with the graph of , write the equation of the
graph that results from

(a) shifting 2 units downward

(b) shifting 2 units to the right

(c) reflecting about the -axis

(d) reflecting about the -axis

(e) reflecting about the -axis and then about the -axis

14. Starting with the graph of , find the equation of the
graph that results from

(a) reflecting about the -axis and then shifting 4 units to
the left

(b) reflecting about the -axis and then shifting 3 units
upward

15–20 ■ Simplify each of the following expressions.

15. 16.

17. 18.

19. 20.

21–24 ■ Write each of the following as an expression using
radicals.

21. 22.

23. 24.

25–30 ■ Show that each of the following statements is true.

25. 26.

27.

28.

29.

30.

31–34 ■ The table lists some function values. Decide
whether the function could be linear, exponential, or neither. 

y � 4 x � 3 y � 4 x�3

y � �2 �x y � 2e x � 1

f �x� � 3e�x
t�x� � 2(1

2)
x

� 1

y � e x

x

y

x y

y � e x

x

y

x 3x 5 b9�b3

�u 4�2 �m 2n�4

� p 3

2 	
3

�2xy 2�3

4 2�3 7 5�2

e 1�4 w 3�4

P � 33x � P � 27 x 8 t�3 � 2 t

500 � �1.025�4t � 500 � �1.1038� t

1

e x�2 � � 1

se 	
x

4 x�3 � 64 � 4 x

12e 0.2t � 12 � �1.2214� t

If the function could be linear or exponential, write a possible
equation for the function.

31. 32.

33. 34.

35. Bacteria population Under ideal conditions a certain
bacteria population is known to double every three hours.
Suppose that there are initially 100 bacteria.

(a) What is the size of the population after 15 hours?

(b) What is the size of the population after hours?

(c) Estimate the size of the population after 20 hours.

; (d) Graph the population function and estimate the time
for the population to reach 50,000.

36. Bacteria population A bacteria culture starts with 
500 bacteria and doubles in size every half hour.

(a) How many bacteria are there after 3 hours?

(b) How many bacteria are there after hours?

(c) How many bacteria are there after 40 minutes?

; (d) Graph the population function and estimate the time
for the population to reach 100,000.

37–38 ■ Find the exponential function whose
graph is given.

37. 38.

t

t

0

(1, 6)

(3, 24)

y

x

”2,    ’
2

9

2

y

x0

f �x� � C � a x

0 5
1 10
2 20
3 40
4 80

x f �x�

0 5
1 10
2 15
3 20
4 25

x t�x�

1 12
2 11
3 9
4 6
5 2

t A�t�

1 18
2 6
3 2
4
5

n P�n�

2�3
2�9
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62 CHAPTER 1 ■ Functions and Models

39. If , show that

40. Compensation Suppose you are offered a job that
lasts one month. Which of the following methods of
payment do you prefer?

I. One million dollars at the end of the month.

II. One cent on the first day of the month, two cents
on the second day, four cents on the third day, and,
in general, cents on the th day.

41. Suppose the graphs of and are
drawn on a coordinate grid where the unit of measure-
ment is 1 inch. Show that, at a distance 2 ft to the right
of the origin, the height of the graph of is 48 ft but
the height of the graph of is about 265 mi.

; 42. Compare the functions and by
graphing both functions in several viewing rectangles.
Find all points of intersection of the graphs correct to
one decimal place. Which function grows more rapidly
when is large?

; 43. Compare the functions and by
graphing both and in several viewing rectangles.
When does the graph of finally surpass the graph 
of ?

; 44. Use a graph to estimate the values of such that
.

; 45. World population Use a graphing calculator with
exponential regression capability to model the popula-
tion of the world with the data from 1950 to 2010 in
Table 1 on page 58. Use the model to estimate the
population in 1993 and to predict the population in the
year 2020.

46. World population

; (a) Use a graphing calculator to find an exponential
model for the population of the world with the data
from 1900 to 1950 in Table 1 on page 58.

(b) Use your results from part (a) and Exercise 45 to
write a piecewise function that models the world
population for 1900 to 2010.

; 47. Computing power Moore’s Law, named after Gor-
don Moore, the co-founder of Intel Corporation, is an
observation that computing power increases exponen-
tially. One formulation of Moore’s Law states that the
number of transistors on integrated circuits doubles
every 18 months. The table lists the number of transis-
tors on various Intel processors for selected years.

2 n�1 n

f �x� � x 2
t�x� � 2 x

f
t

f �x� � x 5
t�x� � 5 x

x

f �x� � x 10
t�x� � e x

f t

t

f

x
e x � 1,000,000,000

f �x� � 5 x

f �x � h� � f �x�
h

� 5 x� 5h � 1

h �

(a) Use a graphing calculator to find an exponential
model for these data. (Use to represent
1980.)

(b) Use the model to estimate how long it takes for the
number of transistors to double. How close is this
to Moore’s Law?

(c) In 2004, Intel introduced the Itanium 2 processor
carrying 592 million transistors. How does this
compare with the number predicted by the model
in part (a)?

; 48. US population The table gives the population of the
United States, in millions, for the years 1900–2010.

Use a graphing calculator with exponential regression
capability to model the US population since 1900. Use
the model to estimate the population in 1925 and to
predict the population in the year 2020.

49. Animal population Some populations at first
increase with exponential growth but eventually slow
down and stabilize at a particular level, called the
carrying capacity. Such quantities can be modeled by
functions of the form

called logistic functions. The value is the carrying
capacity. Suppose an animal population, in thousands,
is modeled by

where is the number of years after January 1, 2000.

(a) According to the model, what is the animal popula-
tion on January 1, 2007?

t � 0

P�t� �
M

1 � Ae�kt

M

P�t� �
23.7

1 � 4.8e�0.2 t

t

Transistors
Year Processor (in millions)

1982 80286 0.134
1985 386 0.275
1989 486 1.2
1993 Pentium 3.1
1995 Pentium Pro 5.5
1997 Pentium II 7.5
1999 Pentium III 28
2001 Pentium 4 42

Year Population Year Population

1900 76 1960 181
1910 92 1970 205
1920 106 1980 227
1930 123 1990 249
1940 132 2000 281
1950 152 2010 309
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SECTION 1.6 ■ Logarithmic Functions 63

(b) What is the carrying capacity of the population?

; (c) Sketch a graph of the function. Then use the graph
to estimate when the number of animals reaches
half the carrying capacity.

50. Market penetration Consumer ownership of a par-
ticular product (such as a refrigerator or microwave
oven) over time can sometimes follow a logistic model;
ownership increases swiftly at first, but eventually mar-
ket saturation occurs and virtually everyone who is
capable of and interested in owning the product has
purchased it. Suppose the percentage of households 

owning a certain product is given by

where is the number of years after 1980.

(a) The carrying capacity is 0.94. What does this rep-
resent in this context? Why can’t the carrying
capacity be larger than 1?

(b) What percentage of households owned the product
in 1990?

; (c) Use a graphing calculator to estimate when 90% of
households owned the product.

t�t� �
0.94

1 � 2.5e�0.3 t

t

51. Starting with the graph of , find the equation of
the graph that results from

(a) reflecting about the line 

(b) reflecting about the line 

52. Starting with the graph of , find the equation of
the graph that results from

(a) reflecting about the line 

(b) reflecting about the line 

y � 2 x

y � 3

x � �4

y � e x

y � 4

x � 2

; 53. If you graph the function you’ll see

that appears to be an odd function. Prove it.

; 54. Graph several members of the family of functions

where . How does the graph change when 
changes? How does it change when changes?

a � 0 b
a

f �x� �
1 � e 1�x

1 � e 1�x

f

f �x� �
1

1 � ae bx

■ Challenge Yourself

Logarithmic Functions

■ Introduction to Logarithms
In Section 1.5 we looked at a bacteria population that started with 1000 bacteria and
doubled every hour. If is the time in hours and is the population in thousands,
then we can say is a function of : . Several values are listed in Table 1.
Suppose, however, that we change our point of view and become interested in 
the time required for the population to reach various levels. In other words, we are
thinking of the function in reverse: We would like to input the population and
receive the number of hours as the output, so . This function is called
the inverse function of . Its values are shown in Table 2; they are simply the

1.6

t N
N t N � f �t�

N
t t � t�N� t

f

T A B L E  2 as a function of t N

thousand bacteria

1 0
2 1
4 2
8 3

16 4
32 5

t � t�N�

NN
� time (in hours) to reach

T A B L E  1 as a function of tN

(hours) (in thousands)

0 1
1 2
2 4
3 8
4 16
5 32

N � f �t�
� population at time tt
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values from Table 1 with the columns reversed. The inputs of become the outputs
of  , and vice versa.

The inverse of the exponential function (assuming that and
) is called the logarithmic function with base and is denoted by . 

The population of the bacteria in Table 1 is given by , so its inverse (in
Table 2) is . In words, the value of is the exponent to which the
base 2 must be raised to give . Since , we have .
In general,

■ E X A M P L E  1  Evaluating a Logarithm

The value of is 3, because . ■

■ E X A M P L E  2  
Converting between Logarithmic and Exponential Forms

Write the logarithmic expression in an equivalent exponential form.

S O L U T I O N

In the logarithmic expression, is the exponent to which 4 is raised to get :

■

The most commonly used bases for logarithms are 10 and . In fact, these are
normally the only bases for which calculators have logarithm keys. When the base
is 10, the subscript 10 is often omitted. Thus is assumed to be the logarithmic
function with base 10, called the common logarithm. It is the inverse of the expo-
nential function .

■ The Natural Logarithmic Function
For the purposes of calculus, we will soon see that the most convenient choice of a
base for logarithms is the number , which was defined in Section 1.5. The loga-
rithm with base is called the natural logarithm and has a special notation:

The natural logarithmic function is the inverse of the natural exponential function
. Thus

(1)

f
t

f �x� � a x a � 0
a � 1 a loga

f �t� � 2 t

t�N� � log2 N log2 N
N f �3� � 2 3 � 8 t�8� � log2 8 � 3

loga b � c &? ac � b

log5125 53 � 125

log4 w � r

r w

4r � w

e

log x

y � 10 x

e
e

loge x � ln x

ex

ln b � c &? ec � b

64 CHAPTER 1 ■ Functions and Models

Notation for Logarithms
Most textbooks in calculus and the
sciences, as well as calculators, use
the notation for the natural loga-
rithm and for the common
logarithm. In the more advanced
mathematical and scientific litera-
ture and in computer languages,
however, the notation often
denotes the natural logarithm.

ln x
log x

log x
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SECTION 1.6 ■ Logarithmic Functions 65

In particular,

because the exponent to which must be raised to return is 1, and

because .
The natural logarithmic function has domain and range . (Because
is the inverse of , its domain is the range of , and its range is the domain of

.) The graph of , shown in Figure 1, is the reflection of the graph of
about the line . The logarithmic function has a vertical asymptote

along the -axis and -intercept 1, whereas the exponential function has a horizon-
tal asymptote along the -axis and -intercept 1. The fact that is a very rap-
idly increasing function for is reflected in the fact that is a very
slowly increasing function for . Notice that the values of become very
large negative as approaches 0.

■ E X A M P L E  3  Sketching the Graph of a Logarithmic Function

Sketch the graph of the function .

S O L U T I O N

We start with the graph of as given in Figure 1. Using the transfor-
mations of Section 1.2, we shift it 2 units to the right to get the graph of

and then we shift it 1 unit downward to get the graph of
. (See Figure 2.)

■

Although is an increasing function, it grows very slowly when . In
fact, grows more slowly than any positive power of . (Compare this to the fact
that grows more rapidly than any power of .) To illustrate this fact, we compare
approximate values of the functions and in the following 

ln e � 1

e e

ln 1 � 0

e 0 � 1
ln x �0, �� �

ln x e x e x

e x y � ln x
y � ex y � x

y x
x y y � ex

x � 0 y � ln x
x � 1 ln x

x

y � ln�x � 2� � 1

y � ln x

y � ln�x � 2�
y � ln�x � 2� � 1

FIGURE 2

0

y

2 x(3, 0)

x=2

y=ln(x-2)

0

y

x

y=ln x

(1, 0) 0

y

2 x

x=2

(3, _1)

y=ln(x-2)-1

ln x x � 1
ln x x
e x x

y � ln x y � x 1�2 � sx

y

1

0

x
1

y=x

y=´

y=ln x

FIGURE 1
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66 CHAPTER 1 ■ Functions and Models

table and we graph them in Figures 3 and 4. You can see that initially the graphs of
and grow at comparable rates, but eventually the root function far

surpasses the logarithm.

■ Properties of Logarithms
The following cancellation equations say that if we form the composition of the
natural logarithmic and exponential functions, in either order, the output is simply
the original input.

(2)

Because the exponential function and logarithmic function are inverses of each
other, these equations say in effect that the two functions cancel each other when
applied in succession.

■ E X A M P L E  4  Evaluating Natural Logarithms

Evaluate:

(a) (b)

S O L U T I O N

(a) From the first cancellation equation in (2), . Another way to look at
it: is the exponent to which must be raised to get , namely 4.

(b) The value of is the exponent to which must be raised to get 25, but
this is not a number we can determine by hand. Using a calculator, the value
is approximately 3.2189. Thus . ■

y � sx y � ln x

x0

y

1000

20

y=œ„x

y=ln x

x0

y

1

1

y=œ„x

y=ln x

FIGURE 4FIGURE 3

ln�ex� � x

e ln x � x �x � 0�

ln�e 4� ln 25

ln�e 4� � 4
ln�e 4� � 4 e e 4

e

e 3.2189 � 25

ln 25

x 1 2 5 10 50 100 500 1000 10,000 100,000

0 0.69 1.61 2.30 3.91 4.6 6.2 6.9 9.2 11.5

1 1.41 2.24 3.16 7.07 10.0 22.4 31.6 100 316sx

ln x
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■ E X A M P L E  5  Solving a Basic Logarithmic Equation

Find if .

S O L U T I O N  1

From (1) we see that

means    

Therefore .
(If you have trouble working with the “ ” notation, just replace it by .

Then the equation becomes ; so, by the definition of logarithm, .)

S O L U T I O N  2

Start with the equation

and apply the exponential function to both sides of the equation:

But the second cancellation equation in (2) says that . Therefore

■

The following properties of logarithmic functions follow from the correspond-
ing properties of exponential functions given in Section 1.5.

■ Laws of Logarithms If and are positive numbers, then

1.

2.

3. (where is any real number)

■ E X A M P L E  6  Simplifying a Logarithmic Function

Show that is a linear function.

S O L U T I O N

Using the first law of logarithms, can be written as . But the first
cancellation equation in (2) says that , so we have , a
linear function with slope 3 and -intercept . ■

ln x � 5x

e 5 � xln x � 5

x � e 5

logeln
e 5 � xloge x � 5

ln x � 5

e ln x � e 5

e ln x � x

x � e 5

yx

ln�xy� � ln x � ln y

ln� x

y� � ln x � ln y

rln�xr � � r ln x

f �t� � ln�5e 3t�

ln 5 � ln�e 3t�f �t�
f �t� � 3t � ln 5ln�e 3t� � 3t

ln 5 � 1.6094y

SECTION 1.6 ■ Logarithmic Functions 67
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68 CHAPTER 1 ■ Functions and Models

■ E X A M P L E  7  Using Properties of Logarithms

Express as a single logarithm.

S O L U T I O N

Using Laws 3 and 1 of logarithms, we have

■

■ Solving Exponential Equations
Logarithms can be used to solve exponential equations. By taking the natural loga-
rithm of each side of an equation, we can use the properties of logarithms to solve
for a variable in an exponent regardless of the base of the exponential expression.

■ E X A M P L E  8  Solving an Exponential Equation

Solve the equation .

S O L U T I O N

We take natural logarithms of both sides of the equation and use (2):

Using a calculator, we can approximate the solution: to four decimal places,
. ■

■ E X A M P L E  9  Solving an Exponential Equation

Solve the equation . Give a decimal number solution, rounded to four
decimal places.

S O L U T I O N

Take natural logarithms of both sides of the equation:

Using Law 3 of logarithms, we can write

ln a �
1
2 ln b

ln a �
1
2 ln b � ln a � ln b 1�2

� ln a � ln sb

� ln(asb )

e 5�3x � 10

ln�e 5�3x� � ln 10

5 � 3x � ln 10

3x � 5 � ln 10

x � 1
3�5 � ln 10�

x � 0.8991

3 x � 18

ln�3 x� � ln 18

x � ln 3 � ln 18
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SECTION 1.6 ■ Logarithmic Functions 69

Dividing both sides by gives

A quick check confirms that . ■

■ E X A M P L E  1 0  An Exponential Model for Light Intensity

Light decreases in intensity exponentially as it passes through a substance. Sup-
pose the intensity of a beam of light passing through the murky water in a pond
can be modeled by , where is the initial intensity of the light
and is the distance in feet that the beam has traveled through the water. How 
far has the beam traveled when its intensity is reduced to 10% of its original
intensity?

S O L U T I O N

Because 10% of the original intensity is , we need to solve the equation
. We start by isolating the exponential expression (divide both

sides by ), and then we take natural logarithms of both sides:

Thus the intensity is reduced to 10% of the original intensity after the light has
passed through about 59.8 feet of the water. ■

ln 3

x �
ln 18

ln 3
� 2.6309

32.6309 � 18

I�x� � I0 � 2 �x�18 I0

x

0.10I0

I0 � 2�x�18 � 0.1I0

I0

2�x�18 � 0.1

ln�2�x�18� � ln�0.1�

�
x

18
� ln 2 � ln�0.1�

x � �
18

ln 2
� ln�0.1� � 59.795

We can use a graphing calculator 
to check our work in Example 9.
Figure 5 shows that the graph of

intersects the horizontal line
at .

y � 3 x

y � 18 x � 2.63

FIGURE 5

30

_5

_1 4

1. (a) How is the logarithmic function defined?

(b) What is the domain of this function?

(c) What is the range of this function?

2. (a) What is the natural logarithm?

(b) What is the common logarithm?

(c) Sketch the graphs of the natural logarithm function
and the natural exponential function with a common
set of axes.

y � loga x 3–6 ■ Find the exact value (without using a calculator) of
each expression.

3. (a) (b)

4. (a) (b)

5. (a) (b)

6. (a) (b)

log2 8 log8 2

ln e 3 e ln 7

ln e s2 e 3 ln 2

log2 64 log6
1

36

■ Exercises 1.6
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70 CHAPTER 1 ■ Functions and Models

25. 26.

27–30 ■ Express the given quantity as a single logarithm.

27. 28.

29. 30.

31. (a) Explain why and have the
same graph.

(b) Explain why and don’t have
the same graph.

32. The graph of the function is a line through
the origin. Explain why this is a linear function. What
is the slope?

33–34 ■ Solve each equation for . Give both an exact
solution and a decimal approximation, rounded to four 
decimal places.

33. (a) (b)

34. (a) (b)

35–42 ■ Solve each equation. Give a decimal approxima-
tion, rounded to four decimal places.

35. 36.

37. 38.

39. 40.

41. 42.

43. County population Suppose the function
is used to model the population,

measured in thousands of people, of a county years
after the end of 1995. When will the population reach
one million people?

44. Vehicle value The value of Tracy’s car is given by
, where is the number of years

she has owned the vehicle. When will the car be worth
only $2000?

45. Water transparency Environmental scientists mea-
sure the intensity of light at various depths in a lake to 

�ln x�2 � 2 ln xln�u�3� �
ln u

ln 3

ln 3 � 2 ln x2 ln 4 � ln 2

ln x � a ln y � b ln z3 ln u � 2 ln 5

y � 3 ln xy � ln�x 3�

f �t� � ln�3 t�

x

e �x � 52 ln x � 1

ln�5 � 2x� � �3e 2x�3 � 7 � 0

1.13 x � 7.655 t � 20

10 3�2x � 422 x�5 � 3

450e 0.15t � 12008e 3x � 31

100 � �4 �p�5� � 8.86 � �2 x�7� � 11.4

P�t� � 437.2�1.036) t

t

tV�t� � 18500�0.78� t

y � ln�x 2� y � 2 ln x

7–10 ■ Use a calculator to evaluate the quantity correct to
four decimal places.

7. 8.

9. 10.

11–12 ■ Write the logarithmic expression in an equivalent
exponential form.

11. (a) (b)

12. (a) (b)

13–14 ■ Write the exponential expression in an equivalent
logarithmic form.

13. (a) (b)

14. (a) (b)

15–18 ■ Make a rough sketch of the graph of each func-
tion. Do not use a calculator. Just use the graph given in
Figure 1 and the transformations of Section 1.2.

15. 16.

17. 18.

19. Starting with the graph of , find the equation of
the graph that results from

(a) shifting 3 units upward

(b) shifting 3 units to the left

(c) reflecting about the -axis

(d) reflecting about the -axis

20. If we start with the graph of , reflect the graph
about the -axis, and then shift the graph down 4 units,
what is the equation of the resulting graph?

21. Suppose that the graph of is drawn on a coor-
dinate grid where the unit of measurement is an inch.
How many miles to the right of the origin do we have
to move before the height of the curve reaches 3 ft?

; 22. Compare the functions and by
graphing both and in several viewing rectangles.
When does the graph of finally surpass the graph of ?

23–26 ■ State whether each of the following is true or
false.

23. 24.

ln 100 3 ln�e � 2�

ln 28

ln 4

1n 6

5 ln 3

log8 4 � 2
3 log6 u � v

ln 12 � 2.4849 C � ln A

10 3 � 1000 y � 4 x

e x � 2 R � e 3t

y � �ln x y � ln��x�

y � ln�x � 1� � 3 y � ln�x � 4� � 2

y � ln x

x

y

y � ln x
x

y � ln x

f �x� � x 0.1
t�x� � ln x

f t

f t

ln�cd � � ln c � ln dln�c � d � � ln c � ln d
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SECTION 1.6 ■ Logarithmic Functions 71

find the “transparency” of the water. Certain levels of
transparency are required for the biodiversity of the
submerged macrophyte population. In a certain lake the
intensity of light at a depth of feet is given by

where is measured in lumens. At what depth has the
light intensity dropped to 5 lumens?

46. Engine temperature Suppose you’re driving a car
on a cold winter day ( outside) and the engine
overheats (at about ). When you park, the engine
begins to cool down. The temperature of the engine 

minutes after you park satisfies the equation

Find the temperature of the engine after 20 minutes.

47. Bacteria population If a bacteria population starts
with 100 bacteria and doubles every three hours, then
the number of bacteria after hours is

(see Exercise 35 in Section 1.5). When will the popula-
tion reach 50,000?

48. Electric charge When a camera flash goes off, the
batteries immediately begin to recharge the flash’s
capacitor, which stores electric charge given by

(The maximum charge capacity is and is measured
in seconds.) How long does it take to recharge the
capacitor to 90% of capacity if ?

; 49. Investment Many graphing calculators can fit a
logarithmic function to data. The 

I

20�F
220�F

T
x

ln�T � 20

200 � � �0.11x

t

n � f �t� � 100 � 2 t�3

Q�t� � Q0�1 � e �t�a�

tQ0

a � 2

f �x� � a � b ln x

I � 10e �0.008x

x Value Years

$11,000 2.1
$12,000 4.0
$13,000 5.8
$14,000 7.4
$15,000 9.0
$16,000 10.4
$17,000 11.7
$18,000 13.0

Temperature Time (hours)

2200 0.52
2000 1.12
1800 1.80
1600 2.56
1400 3.45
1200 4.48
1000 5.76
800 7.39

��F�

■ Challenge Yourself

51. Television viewership Market researchers estimate that the percentage of house-
holds that have viewed a particular television program is given by the logistic function

where is time in years and corresponds to January 1, 2005. When will 30% of
households have seen the program?

f �t� �
0.41

1 � 0.52e�0.4 t

t t � 0

table shows the time required for a $10,000 investment
to reach different values in a particular bank account.

(a) Use a graphing calculator to find a logarithmic
model for the data.

(b) Use the model to estimate how long it will take for
the account to reach $25,000 in value.

; 50. Kiln temperature A pottery kiln heated to is
turned off and allowed to cool. An alert sounds when-
ever the temperature drops . The elapsed times,
in hours, when the alerts sounded are recorded in the
table.

(a) Use a graphing calculator to find a logarithmic
model for the data.

(b) Use the model to estimate how long it will take for
the kiln to cool to .

2400�F

200�F

300�F
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